Journal of Materials Science

, Volume 29, Issue 7, pp 1765–1772 | Cite as

Effect of size and morphology of particulate SiC dispersions on fracture behaviour of Si3N4 without sintering aids

  • G. Pezzotti
  • T. Nishida


The relation between microstructural characteristics and fracture behaviour of Si3N4/SiC-particle composites were evaluated for a series of materials containing a 25 vol% dispersion, with mean size in the range 7–106μm. All the composites were fabricated by hot isostatic pressing without external addition of sintering aids via glass encapsulation. Quantitative image analysis techniques were employed to assess the microstructural parameters, dealing with morphology and distribution of the SiC particles. A fracture mechanics analysis based on the determination of fracture strength, toughness, work of fracture and rising R-curve behaviour provided the basis for discussion of the effectiveness of the SiC dispersions.The results of mechanical tests are compared with those obtained on the monolithic material fabricated by the same process. The microfracture mechanisms in composites are discussed by relating microstructural data, obtained by image analysis, to toughness data.


Encapsulation Microstructural Characteristic Fracture Behaviour Fracture Strength Quantitative Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Larker, J. Adlerborn and H. Bohman, Society of Automotive Engineers, Technical paper No. 770335 (1977).Google Scholar
  2. 2.
    J. Heinrich and M. Boehmer, Ber. Dtsch. Keram. Ges. 61 (1984) 399.Google Scholar
  3. 3.
    K. Honma, H. Okada, T. Fujikawa and T. Tatsuno, Yogyo-Kyokai-Shi 95 (1987) 229.CrossRefGoogle Scholar
  4. 4.
    I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto and M. Koizumi, J. Amer. Ceram. Soc. 72 (1989) 1656.CrossRefGoogle Scholar
  5. 5.
    J. Adlerborn, M. Burstroem, L. Hermansson and H. Larker, Mater. Design 8 (1987) 229.CrossRefGoogle Scholar
  6. 6.
    I. Tanaka, G. Pezzotti, Y. Miyamoto and T. Okamoto, J. Mater. Sci. 26 (1991) 208.CrossRefGoogle Scholar
  7. 7.
    G. Pezzotti, I. Tanaka and T. Nishida, Phil. Mag. Lett. 67 (1993) 95.CrossRefGoogle Scholar
  8. 8.
    H. Awaji and Y. Sakaida, J. Amer. Ceram. Soc. 73 (1990) 3522.CrossRefGoogle Scholar
  9. 9.
    J. I. Bluhm, Eng. Fract. Mech. 7 (1975) 593.CrossRefGoogle Scholar
  10. 10.
    Appendix in D. Munz, T. T. Bubsey and J. L. Shannon, Jr., J. Amer. Ceram. Soc. 63 (1980) 300.CrossRefGoogle Scholar
  11. 11.
    G. Pezzotti, K. Niihara and T. Nishida, J. Test. Eval. 21 (1993) 358.CrossRefGoogle Scholar
  12. 12.
    G. R. Irwin, J. Appl. Mech. 24 (1957) 361.Google Scholar
  13. 13.
    F. C. Hull and W. J. Houk, Trans. AIME 197 (1953) 565.Google Scholar
  14. 14.
    E. E. Underwood, “Quantitative Stereology” (Addison-Wesley, Massachussetts, 1970) p. 26.Google Scholar
  15. 15.
    G. Pezzotti, I. Tanaka and T. Okamoto, J. Amer. Ceram. Soc. 73 (1990) 3033.CrossRefGoogle Scholar
  16. 16.
    E. E. Underwood, “Quantitative Stereology” (Addison-Wesley, Massachusetts, 1970) p. 92.Google Scholar
  17. 17.
    E. Tani, S. Umebayashi, K. Kishi, K. Kobayashi and M. Nishijima, Amer. Ceram. Soc. Bull. 65 (1986) 1311.Google Scholar
  18. 18.
    C. W. Li and J. Yamanis, Ceram. Eng. Sci. Proc. 10 (1989) 632.CrossRefGoogle Scholar
  19. 19.
    J. A. Todd and Z. Y. Xu, J. Mater. Sci. 24 (1989) 4443.CrossRefGoogle Scholar
  20. 20.
    R. L. Yeckley and K. N. Siebein, in “Proceedings of the Third International Symposium on Ceramic Materials and Components for Engines”, edited by V. J. Tennoy (American Ceramics Society Ohio, 1989) p. 751.Google Scholar
  21. 21.
    I. Tanaka, G. Pezzotti, K. Matsushita, Y. Miyamoto and T. Okamoto, J. Amer. Ceram. Soc. 74 (1991) 752.CrossRefGoogle Scholar
  22. 22.
    I. Tanaka and G. Pezzotti, ibid. 75 (1992) 772.CrossRefGoogle Scholar
  23. 23.
    Idem, ibid. 75 (1992) 1023.CrossRefGoogle Scholar
  24. 24.
    R. W. Davidge and D. J. Green, J. Mater. Sci. 3 (1968) 629.CrossRefGoogle Scholar
  25. 25.
    N. Miyata and H. Jinno, ibid. 16 (1981) 2205.CrossRefGoogle Scholar
  26. 26.
    G. C. Sih, “Handbook of Stress Intensity Factors” (Lehigh University Press, Pennsylavania, 1973).Google Scholar
  27. 27.
    M. Sakai and R. C. Bradt, Seramikkusu Rombunshi 96 (1988) 801.CrossRefGoogle Scholar
  28. 28.
    D. P. H. Hasselman and H. D. Batha, Appl. Phys. Lett. 2 (1963) 111.CrossRefGoogle Scholar
  29. 29.
    J. J. Petrovich, J. P. Milewski, D. L. Rohr and F. D. Gac, J. Mater, Sci. 20 (1985) 1167.CrossRefGoogle Scholar
  30. 30.
    H. Katsuki, H. Ushijima, M. Kanda, H. Iwanaga and M. Egashira, Yogyo-Kyokai-Shi 95 (1987) 1089.CrossRefGoogle Scholar
  31. 31.
    L. R. F. Rose, Mech. Mater. 6 (1987) 11.CrossRefGoogle Scholar
  32. 32.
    N. Fares, J. Appl. Mech. 56 (1989) 837.CrossRefGoogle Scholar
  33. 33.
    G. Pezzotti, J. Amer. Ceram. Soc. 76 (1993) 1313.CrossRefGoogle Scholar
  34. 34.
    G. Pezzotti, K. Noda, Y. Okamoto and T. Nishida, J. Mater. Sci. 28 (1993) 3080.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. Pezzotti
    • 1
  • T. Nishida
    • 2
  1. 1.The Institute of Scientific and Industrial ResearchISIR, Osaka UniversityOsakaJapan
  2. 2.Faculty of Polytechnique Science, Department of Materials EngineeringKyoto Institute of TechnologyKyotoJapan

Personalised recommendations