Journal of Materials Science

, Volume 29, Issue 7, pp 1724–1730 | Cite as

Creep of PE-10 nickel-base superalloy at 973 K

  • A. J. Marzocca
  • A. C. Picasso


Creep data, at 973 K and stresses between 355 and 512 MPa, in flat specimens of PE-10 nickel-base superalloy are reported. The data have been interpreted in terms of a constitutive equation based on a creep model involving dislocation climb and cross-slip over the strengthening phase. Strain-rate sensitivity and apparent activation energy have also been measured and analysed in the frame of the proposed model.


Polymer Activation Energy Constitutive Equation Material Processing Apparent Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Lupinc, in “Proceedings on High Temperature Alloys for Gas Turbines”, Liege, 1982, edited by B. R. Brunetaud, D. Coutsouradis, T. B. Gibbons, Y. Lindblom, D. B. Meadowcroft and R. Stickler (Reidel, London, 1982) p. 398.Google Scholar
  2. 2.
    G. S. Ansell and J. Weertman, Trans. Met. Soc. AIME 215 (1959) 838.Google Scholar
  3. 3.
    J. P. Rowe and J. W. Freeman, in “Proceedings of the Joint International Conference on Creep” (Institute of Engineering, London, 1963) p. 1.Google Scholar
  4. 4.
    B. A. Wilcox and A. H. Clauer, Trans. Met. Soc. AIME 236 (1969) 578.Google Scholar
  5. 5.
    J. A. Carey, P. M. Sargent and D. R. H. Jones, J. Mater. Sci. Lett. 9 (1990) 572.CrossRefGoogle Scholar
  6. 6.
    R. Lagneborg, J. Mater. Sci. 3 (1968) 596.CrossRefGoogle Scholar
  7. 7.
    K. R. Williams and B. Wilshire, Met. Sci. J. 7 (1973) 176.CrossRefGoogle Scholar
  8. 8.
    J. D. Parker and B. Wilshire, ibid. 9 (1975) 248.CrossRefGoogle Scholar
  9. 9.
    W. J. Evans and G. F. Harrison, ibid. 10 (1976) 307.CrossRefGoogle Scholar
  10. 10.
    J. P. Dennison, P. D. Holmes and B. Wilshire, Mat. Sci. Eng. 33 (1978) 35.CrossRefGoogle Scholar
  11. 11.
    R. Lagneborg and B. Bergman, Met. Sci. January (1976) 20.Google Scholar
  12. 12.
    W. J. Evans and G. F. Harrison, ibid. November (1979) 641.Google Scholar
  13. 13.
    T. B. Gibbons, Scripta Metall. 12 (1978) 749.CrossRefGoogle Scholar
  14. 14.
    W. J. Plumbridge and R. A. Barlett, Res. Mech. 3 (1981) 299.Google Scholar
  15. 15.
    O. Ajaja, T. E. Howson, S. Purusshothaman and J. K. Tien, Mater. Sci. Eng. 44 (1980) 165.CrossRefGoogle Scholar
  16. 16.
    W. J. Evans, A. W. Beale and G. F. Harrison, Scripta Metall. 14 (1980) 165.CrossRefGoogle Scholar
  17. 17.
    T. L. Lin and M. Wen, Mater. Sci. Eng. A128 (1990) 23.CrossRefGoogle Scholar
  18. 18.
    R. A. Mulford, Acta Metall. 27 (1979) 1115.CrossRefGoogle Scholar
  19. 19.
    J. Weertman, J. Appl. Phys. 21 (1955) 1213.CrossRefGoogle Scholar
  20. 20.
    Idem, ibid. 28 (1957) 362.CrossRefGoogle Scholar
  21. 21.
    Idem, Trans. Met. Soc. AIME 233 (1965) 2069.Google Scholar
  22. 22.
    Idem, Trans. Am. Soc. Metals 61 (1968) 681.Google Scholar
  23. 23.
    R. W. Balluffi and D. N. Seidman, J. Appl. Phys. 36 (1965) 2708.CrossRefGoogle Scholar
  24. 24.
    J. Hirth and J. Lothe, “Theory of dislocations” (McGraw-Hill, New York, 1968) p. 704.Google Scholar
  25. 25.
    I. L. Dillamore and R. E. Smallman, Philos. Mag. 11 (1965) 191.CrossRefGoogle Scholar
  26. 26.
    J. Friedel, “Dislocations” (Addison-Wesley, London, 1964).Google Scholar
  27. 27.
    P. C. J. Gallagher, Metall. Trans. 1 (1970) 2429.Google Scholar
  28. 28.
    F. A. Nichols, Mater. Sci. Eng. 8 (1971) 108.CrossRefGoogle Scholar
  29. 29.
    J. P. Poirer, Rev. de Phys. Appl. 11 (1976) 731.CrossRefGoogle Scholar
  30. 30.
    P. B. Hirsch, in “Rate Process in Plastic Deformation of Materials”, Proceedings from the John E. Dorn Symposium, Cleveland, 1972, edited by J. C. M. Li and A. K. Mukherje (ASM no. 4, 1975) p. 1.Google Scholar
  31. 31.
    B. Escaig, J. Phys. Fr. 29 (1968) 225.CrossRefGoogle Scholar
  32. 32.
    H. A. Palacio, O. Garbellini, A. Ges, R. Scarpa, A. Picasso and H. Biloni, Metal. Moderna, in press (1993).Google Scholar
  33. 33.
    A. C. Picasso and H. A. Palacio, in “Proceedings Asociación Fisica Argentina VI”, Vol. 1, San Luis, 1989, edited by Zagier and Urruty (Tandil, 1990) p. 208.Google Scholar
  34. 34.
    F. G. Haynes, J. Inst. Metals 90 (1961) 311.Google Scholar
  35. 35.
    I. Kirman and D. H. Warrington, Metal. Trans. 1 (1970) 2667.Google Scholar
  36. 36.
    I. Kirman, J. Iron Steel Inst. 207 (1969) 1612.Google Scholar
  37. 37.
    A. J. Marzocca, PhD Thesis, FCEN, University of Buenos Aires (1986).Google Scholar
  38. 38.
    A. C. Picasso, Master Thesis, Faculty of Science, University of the Center of Buenos Aires State, Tandil (1990).Google Scholar
  39. 39.
    C. J. Capitani, private communication (1992).Google Scholar
  40. 40.
    H. Kuchling, in “Taschenbuck der Physik” (Vergland Arri Deudsch, Frankfurt, 1988) p. 591.Google Scholar
  41. 41.
    M. Badia and A. Vignes, Acta Metall. 17 (1969) 177.CrossRefGoogle Scholar
  42. 42.
    J. C. M. Li, in “Kinetics and dynamics in dislocation plasticity”, edited by A. R. Rosenfield et al., Dislocation Dynamics (McGraw-Hill, New York, 1968) p. 87.Google Scholar
  43. 43.
    N. Balusubramanian and J. C. M. Li, J. Mater. Sci. 5 (1970) 434.CrossRefGoogle Scholar
  44. 44.
    A. J. Ardell, V. Munjal and D. J. Chellman, Metall. Trans. 7A (1976) 1263.CrossRefGoogle Scholar
  45. 45.
    A. J. Marzocca and A. C. Picasso, to be published.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. J. Marzocca
    • 1
  • A. C. Picasso
    • 2
  1. 1.Facultad de Ciencias Exactas y Naturales, Dto. de FisicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Facultad de Ciencias Exactas, IFIMATUniversidad del Centro de la Provincia de Buenos AiresProv. de Buenos AiresArgentina

Personalised recommendations