Advertisement

Journal of Materials Science

, Volume 29, Issue 7, pp 1719–1723 | Cite as

Thermal expansion studies on a metallic-glass ribbon-reinforced glass-ceramic-matrix composite

  • Rajendra U. Vaidya
  • K. K. Chawla
  • K. N. Subramanian
Papers

Abstract

The thermal-expansion behaviour of a metallic-glass ribbon-reinforced glass-ceramic-matrix composite was studied. The coefficient of thermal expansion of such composites measured in the longitudinal direction was correlated with the volume fraction, the length and the width of the ribbon reinforcements. The experimentally measured values of the thermal-expansion coefficients were found to be in good agreement with a modified Schapery's equation.

Formation of an oxide layer on the ribbon surface and other related phenomena occurring at elevated temperatures were also found to affect the thermal expansion of such composites, and these factors were accommodated into Schapery's equation by incorporating an empirical constant.

Keywords

Oxide Polymer Thermal Expansion Elevated Temperature Oxide Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Cyton, J. Mater. Sci. Lett. 1 (1982) 211.CrossRefGoogle Scholar
  2. 2.
    A. Fels, K. Freidrich, and E. Hornbogen, ibid. 3 (1984) 569.CrossRefGoogle Scholar
  3. 3.
    Idem., ibid. 3 (1984) 639.CrossRefGoogle Scholar
  4. 4.
    J. R. Strife and K. M. Prewo, J. Mater. Sci. 17 (1982) 359.CrossRefGoogle Scholar
  5. 5.
    K. Friedrich, A. Fels and E. Hornbogen, Comp. Sci. Tech. 23 (1985) 79.CrossRefGoogle Scholar
  6. 6.
    R. U. Vaidya and K. N. Subramanian, J. Mater. Sci. 25 (1990) 3291.CrossRefGoogle Scholar
  7. 7.
    R. U. Vaidya and K. N. Subramanian, J. Amer. Ceram. Soc. 73 (1990) 2962.CrossRefGoogle Scholar
  8. 8.
    R. U. Vaidya and K. N. Subramanian, J. Mater. Sci. 26 (1991) 1391.CrossRefGoogle Scholar
  9. 9.
    R. U. Vaidya and K. N. Subramanian, Mater. Manu. Proc. 6 (1991) 605.CrossRefGoogle Scholar
  10. 10.
    R. U. Vaidya and K. N. Subramanian, J. Mater. Sci. 26 (1991) 6453.CrossRefGoogle Scholar
  11. 11.
    R. U. Vaidya and K. N. Subramanian, Comp. Sci. Tech. 43 (1992) 245.CrossRefGoogle Scholar
  12. 12.
    R. U. Vaidya and K. N. Subramanian, SAMPE Journal 28 (1992) 19.Google Scholar
  13. 13.
    R. U. Vaidya, C. Norris, and K. N. Subramanian, J. Mater. Sci., 27 (1992) 4957.CrossRefGoogle Scholar
  14. 14.
    G. Marom and A. Weinberg, J. Mater. Sci. 10 (1975) 1005.CrossRefGoogle Scholar
  15. 15.
    R. A. Schapery, J. Comp. Mat. 2 (1968) 380.CrossRefGoogle Scholar
  16. 16.
    P. Hancock and P. C. Cuthbertson, J. Mater. Sci. 5 (1970) 762.CrossRefGoogle Scholar
  17. 17.
    W. H. Bowyer and M. G. Bader, ibid. 7 (1972) 1315.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Rajendra U. Vaidya
    • 1
  • K. K. Chawla
    • 1
  • K. N. Subramanian
    • 2
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroMexico
  2. 2.Department of Materials Science and MechanicsMichigan State UniversityEast LansingUSA

Personalised recommendations