Advertisement

Journal of Materials Science

, Volume 29, Issue 7, pp 1714–1718 | Cite as

Chemical and structural properties of the system Fe2O3-Nd2O3

  • S. Musić
  • S. Popović
  • M. Ristić
  • B. Sepiol
Papers

Abstract

Chemical and structural properties of the system (1−x)Fe2O3 + xNd2O3, 0≤x≤1, were investigated using X-ray diffraction, 57Fe Mössbauer spectroscopy and Fourier transform-infrared (FT-IR) spectroscopy. The samples were prepared by the chemical coprecipitation and thermal treatment of Fe(OH)3/Nd(OH)3 coprecipitates. X-ray diffraction showed the presence of oxide phases α-Fe2O3 + NdFeO3 in the Fe2O3-rich region, and the oxide phases Nd2O3 + NdFeO3 in the Nd2O3-rich region. 57Fe Mössbauer spectra were characterized with one sextet of spectral lines at room temperature. Mathematical evaluation of the Mössbauer spectra showed distinct regularities in the changes of Mössbauer parameters, thus indicating the presence of two subspectra with very similar spectral behaviour. High sensitivity of the Nd2O3 phase to the moisture and atmosphere CO2 was demonstrated by FT-IR spectroscopy.

Keywords

Polymer Spectroscopy Fourier Fe2O3 Thermal Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Musić, in “Handbook of Ceramics and Composites”, edited by N. P. Cheremisinoff, Vol. 2, (Marcel Dekker, Inc. New York, Basel, Hong Kong, 1992), Ch. 11, pp. 423–63.Google Scholar
  2. 2.
    M. Ristić, S. Popović and S. Musić, J. Mater. Sci. Lett. 9 (1990) 872.CrossRefGoogle Scholar
  3. 3.
    S. Musić, V. Ilakovac, M. Ristić and S. Popović, J. Mater. Sci. 27 (1992) 1011.CrossRefGoogle Scholar
  4. 4.
    S. Musić, S. Popović, I. Czakó-Nagy and F. Gashi, J. Mater. Sci. Lett. 12 (1993) 869.CrossRefGoogle Scholar
  5. 5.
    K. Ruebenbauer and T. Birchall, Hyperfine Int. 7 (1979) 125.CrossRefGoogle Scholar
  6. 6.
    M. Eibshütz, G. Gordetsky, S. Shtrikman and D. Trevés, J. Appl. Phys. 35 (1964) 1072.CrossRefGoogle Scholar
  7. 7.
    M. Ristić, S. Popović, M. Tonković and S. Musić, J. Mater. Sci. 26 (1991) 4225.CrossRefGoogle Scholar
  8. 8.
    S. Musić, S. Popović and M. Ristić, J. Mater. Sci., 28 (1993) 632.CrossRefGoogle Scholar
  9. 9.
    M. P. Rosynek and D. T. Magnuson, J. Catal. 48 (1977) 417.CrossRefGoogle Scholar
  10. 10.
    E. Matijević and W. P. Hsu, J. Colloid Interface Sci. 118 (1987) 506.CrossRefGoogle Scholar
  11. 11.
    B. Aiken, W. P. Hsu and E. Matijević, J. Am. Ceram. Soc. 71 (1988) 846.CrossRefGoogle Scholar
  12. 12.
    M. Akinc and D. Sordelet, Adv. Ceram. Mater. 2 (1987) 232.CrossRefGoogle Scholar
  13. 13.
    N. T. McDevitt and W. L. Baun, Spectrochim. Acta. 20 (1964) 799.CrossRefGoogle Scholar
  14. 14.
    D. F. Mullica, W. O. Milligan and G. W. Beall, J. Inorg. Nucl. Chem. 41 (1979) 525.CrossRefGoogle Scholar
  15. 15.
    H. G. Brittain and J. V. Posluszny, Thermochim. Acta 118 (1987) 25.CrossRefGoogle Scholar
  16. 16.
    J. Takahashi and T. Ohtsuka, J. Am. Ceram. Soc. 72 (1989) 426.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Musić
    • 1
  • S. Popović
    • 1
    • 2
  • M. Ristić
    • 1
  • B. Sepiol
    • 3
  1. 1.Ruder Bošković InstituteZagreb
  2. 2.Department of Physics, Faculty of ScienceZagrebCroatia
  3. 3.Institut für Festkörperphysik der Universität WienViennaAustria

Personalised recommendations