Journal of Materials Science

, Volume 29, Issue 21, pp 5745–5756 | Cite as

Synthesis and pyrolysis of polysilazane as the precursor of Si3N4/SiC ceramic

  • Y. C. Song
  • Y. Zhao
  • C. X. Feng
  • Y. Lu


By co-ammonolysis of MeHSiCI2 and Me2SiCl2 and following thermal polymerization, polysilazanes as the precursors to Si3N4/SiC ceramic fibre were synthesized. The tendency to cross-link in thermal polymerization is suppressed as the result of the introduction of Me2SiCl2 as a starting material. The reactions occurring during thermal polymerization of ammonolysis products are discussed based on infrared (i.r.) and 1H nuclear magnetic resonance (NMR) spectra analysis. The pyroiysis process of polysilazanes is examined in nitrogen and in an NH3 atmosphere. It is shown that the formation of SiC results from the pyrolysis of Si-CH3 groups in polysilazanes by means of the formation of Si-CH2-Si intermediate bonds. The structure and properties of ceramics derived from the pyrolysis of polysilazane and polycarbosilane in N2 or NH3 atmosphere are compared and discussed. Si-N-C ceramic, which was proved to be a composite of α-Si3N4 and β-SiC, exhibits better thermal stability at temperatures higher than 1300°C.


Nitrogen Polymerization Spectrum Analysis Atmosphere Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. TERANISHI, H. ICHIKAWA and T. ISHIKAWA, New Mater. New Processes 2 (1983) 379.Google Scholar
  2. 2.
    T. YAMAMURA, Polym. Prepr. 25 (1984) 6.Google Scholar
  3. 3.
    S. M. JOHNSON, R. D. BRITTAIN, R. H. LAMOREAUX and D. J. ROWCLIFFE, J. Amer. Ceram. Soc. 71 (1988) C-132.Google Scholar
  4. 4.
    T. MAH, H. L. HECHT, D. E. MCCULLUM and J. R. HOENIGMAN, J. Mater. Sci. 19 (1984) 1191.CrossRefGoogle Scholar
  5. 5.
    G. E. LEGROW, T. F. LIM, J. LIPOWITZ and R. REAOCH, Amer. Ceram. Soc. Bull. 66 (1987) 363.Google Scholar
  6. 6.
    T. ISODA, H. KAYA, M. ARAI, H. NISHII and O. FUNAYAMA, in “Proceedings of the First Japanese International SAMPE Symposium, Chiba, 28 November–1 December 1989”, edited by N. Igata, I. Kimpara, T. Kishi, E. Nakata, A. Okura and T. Urgu (Society for the Advancement of Materials and Process Engineering, Tokyo, Japan) p. 912.Google Scholar
  7. 7.
    W. VERBEEK, US Pat. 3853567 (Dec. (1974).Google Scholar
  8. 8.
    D. SEYFERTH and G. H. WISEMAN, J. Amer. Ceram. Soc. 67 (1984) C-132.Google Scholar
  9. 9.
    G. WINTER, W. BERBEEK and M. MANSMANN, US Pat. 3892583 (July 1975).Google Scholar
  10. 10.
    R. H. BANEY and J. H. GAULJR, ibid. 4310651 (January 1982).Google Scholar
  11. 11.
    S. D. BREWER and C. P. HABER, J. Amer. Chem. Soc. 70 (1948) 3888.CrossRefGoogle Scholar
  12. 12.
    D. SEYFERTH and G. H. WISEMAN, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 265.Google Scholar
  13. 13.
    Y. HASEGAWA and K. OKAMURA, J. Mater. Sci. 18 (1983) 3633.CrossRefGoogle Scholar
  14. 14.
    K. OKAMURA, M. SATO and Y. HASEGAWA, J. Ceram. Soc. Jpn. Inter. Edn. 13 (1987) 55.CrossRefGoogle Scholar
  15. 15.
    G. T. BURNS and G. CHANDRA, J. Amer. Ceram. Soc. 72 (1989) 333.CrossRefGoogle Scholar
  16. 16.
    Y. HASEGAWA, Compos. Sci. Technol. 37 (1990) 37.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. C. Song
    • 1
  • Y. Zhao
    • 1
  • C. X. Feng
    • 1
  • Y. Lu
    • 1
  1. 1.The Department of Materials Science and Applied ChemistryChangsha Institute of TechnologyChangsha, HunanPeople’s Republic of China

Personalised recommendations