Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5732–5738 | Cite as

Fracture behaviour of long fibre reinforced thermoplastics

  • T. Vu-Khanh
  • J. Denault
Papers

Abstract

This paper deals with the fracture performance of injection moulded long glass fibre composites based on polybutylene terephthalate (PBT) and polypropylene (PP) matrices. The tensile behaviour of these composites is analysed using the shear lag theory taking into consideration the interfacial shear strength, fibre length distribution and fibre orientation in the mouldings. The fracture performance is investigated using the post yield fracture mechanics approach. The crack growth resistance of the PP and PBT long fibre composite was found to increase with increasing fibre volume content up to 35%. Above 35% a plateau in the fracture performance was observed. A combination of high fibre degradation and a change in the fibre orientation pattern of the moulded pieces is found to be responsible for the plateau region in the performance of the high concentration system. In fact, the dependence of the maximum crack growth resistance of the composites on fibre length and fibre orientation is also controlled by testing temperature. The competition between fibre-induced matrix deformation and the fibre pull-out determines the ability of the composites to resist crack propagation.

Keywords

Fibre Orientation Fracture Performance Crack Growth Resistance Interfacial Shear Strength Polybutylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. BADER and W. H. BOWYER, Composites 4 (1973) 150.CrossRefGoogle Scholar
  2. 2.
    D. A. CIANELLI, J. E. TRAVIS and R. S. BAILEY, Plast. Technol. 34 (1988) 83.Google Scholar
  3. 3.
    W. H. BOWYER, and M. G. BADER, J. Mater. Sci. 7 (1972) 1315.CrossRefGoogle Scholar
  4. 4.
    M. G. BADER and J. F. COLLINS, Proc. 4th Int. Conf. Compos. Mater., ICCM-IV, edited by T. Hayashi, K. Kawata and S. Umekawa (Tokyo, 1982) p. 1067.Google Scholar
  5. 5.
    P. T. CURTIS, M. G. BADER and J. E. BAILEY, J. Mater. Sci. 13 (1978) 377.CrossRefGoogle Scholar
  6. 6.
    F. RAMSTEINER and R. THEYSON, Composites 10 (1979) 111.CrossRefGoogle Scholar
  7. 7.
    M. W. DARLINGTON, B. K. GLADWELL and G. R. SMITH, Polymer 18 (1977) 1269.CrossRefGoogle Scholar
  8. 8.
    T. VU-KHANH, B. SANSCHAGRIN and B. FISA, Polym. Compos. 6 (1985) 249.CrossRefGoogle Scholar
  9. 9.
    J. DENAULT and T. VU-KHANH, ibid. 9 (1988) 360.CrossRefGoogle Scholar
  10. 10.
    T. VU-KHANH and B. FISA, ibid. 7 (1986) 375.CrossRefGoogle Scholar
  11. 11.
    T. VU-KHANH and B. FISA, ibid. 7 (1986) 219.CrossRefGoogle Scholar
  12. 12.
    T. VU-KHANH, J. Thermoplast. Compos. Mater. 4 (1991) 46.CrossRefGoogle Scholar
  13. 13.
    T. VU-KHANH and B. FISA, Theoretical and Appl. Fract. Mech. 13 (1990) 11.CrossRefGoogle Scholar
  14. 14.
    T. VU-KHANH, Proc. Fifth Techn. Conf. of the American Society for Composites (Technomic Publishing, East Lansing, MI, 1990) p. 309.Google Scholar
  15. 15.
    J. DENAULT, T. VU-KHANH and B. FOSTER, Polym. Compos. 10 (1989) 313.CrossRefGoogle Scholar
  16. 16.
    B. SCHIMD, Kunstst Plast. 79 (1989) 39.Google Scholar
  17. 17.
    R. BAILEY and H. KRAFT, Intern. Polym. Process. 2 (1987) 94.CrossRefGoogle Scholar
  18. 18.
    R. BAILEY, Proc. SPE 36th Annual Techn. Conf. (ANTEC '90, Dallas, TX, 1990) p. 1339.Google Scholar
  19. 19.
    T. VU-KHANH, J. DENAULT, P. HABIB and A. LOW, Compos. Sci. Technol. 40 (1991) 423.CrossRefGoogle Scholar
  20. 20.
    J. KARGER-KOCSIS and K. FRIEDRICH, ibid. 32 (1988) 293.CrossRefGoogle Scholar
  21. 21.
    D. E. SPAHR, K. FRIEDRICH, J. M. SCHULTZ, and R. S. BAILEY, J. Mater. Sci. 25 (1990) 4427.CrossRefGoogle Scholar
  22. 22.
    B. FISA, Polym. Compos. 6 (1985) 232.CrossRefGoogle Scholar
  23. 23.
    E-399 Standard Test Method for Plane Strain Fracture Toughness of Metallic Material, Annual Book of ASTM Standards (1983).Google Scholar
  24. 24.
    K. FRIEDRICH, Plast. Rubber Process. Appl. 3 (1983) 255.Google Scholar
  25. 25.
    Idem, Compos. Sci. Technol. 22 (1985) 43.CrossRefGoogle Scholar
  26. 26.
    J. KARGER-KOCSIS and K. FRIEDRICH, Composites 19 (1988) 105.CrossRefGoogle Scholar
  27. 27.
    K. FRIEDRICH, R. WALTER, H. VOSS and J. KARGERKOCSIS, ibid. 17 (1986) 205.CrossRefGoogle Scholar
  28. 28.
    M. W. DARLINGTON, P. L. McGINLEY and G. R. SMITH, J. Mater. Sci 11 (1976) 877.CrossRefGoogle Scholar
  29. 29.
    P. F. BRIGHT, R. J. CROWSON and M. J. FOLKES, ibid. 13 (1978) 2497.CrossRefGoogle Scholar
  30. 30.
    P. F. BRIGHT and M. W. DARLINGTON, Plast. Rubb. Process. Appl. 1 (1981) 139.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. Vu-Khanh
    • 1
  • J. Denault
    • 1
  1. 1.Ecole de technologie superieureUniversity of QuebecMontrealCanada

Personalised recommendations