Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5725–5731 | Cite as

Residual stress-induced spontaneous microcracking in α-SiC platelet Al2O3 composites

  • Y. -S. Chou
  • D. J. Green
Papers

Abstract

The micromechanical stresses associated with hexagonal (6H) α-SiC platelets within a fine-grained alumina matrix were calculated using an Eshelby approach. The stresses within and around the interface of SiC platelets were determined. Both stresses were found to be strongly dependent on the morphology and the volume fraction of the SiC particles. The morphology effect, however, tended to be limited at aspect ratios ⩾ 10. Owing to anisotropy in the thermal and elastic properties of α-SiC, the residual stresses just outside the inclusion also depended on the position along the SiC/Al2O3 interfaces. The maximum tensile stress was found at the edges of SiC platelets. There were two principal tangential tensile stresses which differed greatly at the edges of disc-shaped inclusions. The results of the stress analysis were consistent with observed differences in microcrack morphology and the resultant reduction of the Young's modulus of the composites.

Keywords

Anisotropy Al2O3 Residual Stress Tensile Stress Elastic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. WEI and P. F. BECHER, Am. Ceram. Soc. Bull. 64 (1985) 298.Google Scholar
  2. 2.
    P. F. BECHER and G. C. WEI, J. Am. Ceram. Soc. 67 (1984) C-267.CrossRefGoogle Scholar
  3. 3.
    H-W LEE and M. D. SACKS, ibid. 73 (1990) 1884.CrossRefGoogle Scholar
  4. 4.
    H. M. JANG, W. E. RHINE and H. K.BOWEN, ibid. J. Am. Ceram. Soc. 72Google Scholar
  5. 5.
    N. CLAUSSEN, in “11th RISO International Symposium on Metallurgy and Materials Science 1990”, edited by J. J. Bentzen, J. B. Bilde-Sorensen, N. Christiansen, A. Horsewell and B. Ralph (Chapman and Hall, London, 1969) p. 1.Google Scholar
  6. 6.
    G. SANDERS and M. V. SWAIN, Mater. Forum 14 (1990) 60.Google Scholar
  7. 7.
    C. NISCHIK, M. M. SEIBOLD, N. A. TRAVILZKY and N. CLAUSSEN, J. Am. Ceram. Soc. 74 (1991) 2464.CrossRefGoogle Scholar
  8. 8.
    W. B. JOHNSON, A. S. NAGELBERG and E. BREVAL, ibid. 74 (1991) 2903.Google Scholar
  9. 9.
    Y-S CHOU and D. J. GREEN, ibid., submitted.Google Scholar
  10. 10.
    Z. LI and R. C. BRADT, ibid. 72 (1989) 70.CrossRefGoogle Scholar
  11. 11.
    C-H HSEUH, ibid. 72 (1989) 344.CrossRefGoogle Scholar
  12. 12.
    S. MAJUMDAR and D. KUPPERMAN, ibid. 72 (1989) 312.CrossRefGoogle Scholar
  13. 13.
    A. ABUHASAN, C. BALASINGH and P. PREDECKI, ibid. 73 (1990) 2474.CrossRefGoogle Scholar
  14. 14.
    S. MAJUMDAR and D. KUPPERMAN and J. SINGH, ibid. 71 (1988) 858.CrossRefGoogle Scholar
  15. 15.
    Z. LI and R. C. BRADT, Int J. High Tech. Ceram. 4 (1988) 1.CrossRefGoogle Scholar
  16. 16.
    Idem, J. Mater. Sci. 22 (1987) 2557.CrossRefGoogle Scholar
  17. 17.
    Idem, J. Am. Ceram. Soc. 70 (1987) 445.CrossRefGoogle Scholar
  18. 18.
    J. D. ESHELBY, Proc. R. Soc. (Lond.) Ser. A 241 (1957) 376.CrossRefGoogle Scholar
  19. 19.
    T. MORI and K. TANAKA, Acta Metall. 21 (1973) 571.CrossRefGoogle Scholar
  20. 20.
    T. MURA and P. C. CHENG, ASME J. Appl. Mech. 44 (1977) 591.CrossRefGoogle Scholar
  21. 21.
    Z. LI and R. C. BRADT, J. Am. Ceram. Soc. 72 (1989) 459.CrossRefGoogle Scholar
  22. 22.
    Z. LI, PhD thesis, University of Washington, Seattle, WA (1988).Google Scholar
  23. 23.
    W. E. TEFFT, J. Res. NBS 70A (1966) 277.CrossRefGoogle Scholar
  24. 24.
    J. B. WACHTMAN, JR, T. G. SCUDERI and G. W. CLEEK, J. Am. Ceram. Soc. 45 (1962) 319.CrossRefGoogle Scholar
  25. 25.
    G. P. TANDON and G. J. WENG, J. Appl. Mech. 53 (1986) 511.CrossRefGoogle Scholar
  26. 26.
    R. W. DAVIDGE and T. J. GREEN, J. Mater. Sci. 3 (1968) 629.CrossRefGoogle Scholar
  27. 27.
    D. J. GREEN, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, F. F. Lange and D. P. H. Hasselman (Plenum Press, New York, 1983) pp. 457–78.CrossRefGoogle Scholar
  28. 28.
    J. SELSING, J. Am. Ceram. Soc. 44 (1961) 419.CrossRefGoogle Scholar
  29. 29.
    Y-S CHOU, PhD thesis, The Pennsylvania State University (1992).Google Scholar
  30. 30.
    J. A. KUSZYK and R. C. BRADT, J. Am. Ceram. Soc. 56 (1973) 420.CrossRefGoogle Scholar
  31. 31.
    D. R. CLARKE and D. J. GREEN, in “Advances in Materials Characterization”, edited by D. R. Rossington, R. A. Condrate and R. I. Snyder (Plenum, New York, 1983) p. 323.CrossRefGoogle Scholar
  32. 32.
    D. P. H. HASSELMAN and J. O. SINGH, Am. Ceram. Soc. Bull. 58 (1979) 856.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. -S. Chou
    • 1
  • D. J. Green
    • 1
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations