Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5709–5714 | Cite as

Investigation on crystalline phases and mechanical properties of TZP ceramics prepared from sol-gel powders

  • N. M. Gokhale
  • R. Dayal
  • S. C. Sharma
  • Ramji Lal
Papers

Abstract

Y2O3-stabilized tetragonal zirconia polycrystalline (TZP) ceramics containing 1–5 mol% Y2O3 were prepared by hot pressing and pressureless sintering of sol-gel-derived powders. Sintered ceramics were evaluated for their density, grain and crystallite size, width of transformation zone, crystalline phases and mechanical properties. Variation in the values of fracture toughness and flexural strength has been explained on the basis of crystallite size and proportion of transformable tetragonal phase, which are influenced by the concentration of Y2O3 in TZP ceramics. Correlation of the data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics.

Keywords

Polymer Mechanical Property Zirconia Fracture Toughness Crystallite Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. MASAKI, J. Amer. Ceram. Soc. 69 (1986) 519.CrossRefGoogle Scholar
  2. 2.
    K. TSUKUMA, Y. KUBOTA and T. TSUKIDATE, in “Advances in Ceramics”, Vol. 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 382.Google Scholar
  3. 3.
    A. G. EVANS and A. H. HEUER, J. Amer. Ceram. Soc. 63 (1980) 241.CrossRefGoogle Scholar
  4. 4.
    R. H. J. HANNINK and M. V. SWAIN, ibid. 18 (1982) 53.Google Scholar
  5. 5.
    A. H. HEUER, in “Advances in Ceramics”, Vol. 3, Science and Technology of Zirconia, edited by A. H. Heuer and L. W. Hobbs (American Ceramic Society, Columbus, Ohio, 1981) p. 98.Google Scholar
  6. 6.
    N. CLAUSSEN, in “Advances in Ceramics”, Vol. 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 325.Google Scholar
  7. 7.
    T. MASAKI and Y. MURATA, J. Mater. Sci. 22 (1987) 407.CrossRefGoogle Scholar
  8. 8.
    C. A. ANDERSON and T. K. GUPTA, in “Advances in Ceramics”, Vol. 3, Science and Technology of Zirconia, edited by A. H. Heuer and L. W. Hobbs (American Ceramic Society, Columbus, Ohio, 1981) p. 184.Google Scholar
  9. 9.
    I. NETTLESHIP and R. STEVENS, Int. J. High Tech. Ceram. 3 (1987) 1.CrossRefGoogle Scholar
  10. 10.
    Y. L. CHEN and R. J. BROOK, Brit. Ceram. Trans. J. 88 (1989) 7.Google Scholar
  11. 11.
    H. G. SCOTT, J. Mater. Sci. 10 (1975) 1527.CrossRefGoogle Scholar
  12. 12.
    T. MASAKI, J. Amer. Ceram. Soc. 69 (1986) 638.CrossRefGoogle Scholar
  13. 13.
    T. K. GUPTA, J. H. BECHTOLD, R. C. KUZNICKI, L. H. CADOFF and B. R. ROSSING, J. Mater. Sci. 12 (1977) 2421.CrossRefGoogle Scholar
  14. 14.
    M. V. SWAIN and L. R. F. ROSE, J. Amer. Ceram. Soc. 69 (1986) 511.CrossRefGoogle Scholar
  15. 15.
    T. KATO and M. SHIMADA, ibid. 68 (1985) 356.CrossRefGoogle Scholar
  16. 16.
    F. F. LANGE, J. Mater. Sci. 17 (1982) 240.CrossRefGoogle Scholar
  17. 17.
    J. WANG, M. RAINFORTH and R. STEVENS, Brit. Ceram. Trans. J. 88 (1989) 1.Google Scholar
  18. 18.
    A. H. HEUER, M. RUHLE and D. B. MARSHALL, J. Amer. Ceram. Soc. 73 (1990) 1984.Google Scholar
  19. 19.
    D. J. KIM, ibid. 73 (1990) 115.CrossRefGoogle Scholar
  20. 20.
    T. MASAKI and K. SINJO, Ceram. Int. 13 (1987) 13.CrossRefGoogle Scholar
  21. 21.
    T. MASAKI and K. SHINJO, in “Advances in Ceramics”, Vol. 24, Science and Technology of Zirconia III, edited by S. Somiya, N. Yamamoto and H. Yenegida (American Ceramic Society, Columbus, Ohio, 1988) p. 709.Google Scholar
  22. 22.
    A. G. EVANS and R. M. CANNON, Acta Met. 34 (1986) 761.CrossRefGoogle Scholar
  23. 23.
    R. C. GARVIE, J. Phys. Chem. 69 (1965) 1238.CrossRefGoogle Scholar
  24. 24.
    M. I. OSENDI, J. S. MOYA, C. J. SERNA and J. SORIA, J. Amer. Ceram. Soc. 68 (1985) 135.CrossRefGoogle Scholar
  25. 25.
    Y. MURASE and E. KATO, ibid. 66 (1983) 196.CrossRefGoogle Scholar
  26. 26.
    C. A. ANDERSON, J. GREGGI Jr., and T. K. GUPTA, in “Advances in Ceramics”, Vol. 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 78.Google Scholar
  27. 27.
    T. SAKUMA, Y. YOSHIZAWA and H. SUTO, J. Mater. Sci. 20 (1985) 2399.CrossRefGoogle Scholar
  28. 28.
    M. SUGIYAMA and H. KUBO, Yogyo-Kyokai-Shi 94 (1986) 30.CrossRefGoogle Scholar
  29. 29.
    M. RUHLE and A. H. HEUER, in “Advances in Ceramics”, Vol. 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 14.Google Scholar
  30. 30.
    A. H. HEUER and M. RUHLE, Acta Met. 33 (1985) 2101.CrossRefGoogle Scholar
  31. 31.
    R. DAYAL, N. M. GOKHALE, S. C. SHARMA, RAMJI LAL and R. KRISHNAN, Brit. Ceram. Trans. J. 91 (1992) 45.Google Scholar
  32. 32.
    J. F. JOE and A. V. VIRKAR, J. Amer. Ceram. Soc. 73 (1990) 365.Google Scholar
  33. 33.
    M. I. MENDELSON, ibid. 52 (1989) 443.CrossRefGoogle Scholar
  34. 34.
    D. MUNZ, R. BUBSEY and J. L. SHANNON Jr., ibid. 63 (1980) 300.CrossRefGoogle Scholar
  35. 35.
    H. P. KLUG and L. E. ALEXANDER, “X-ray Diffraction Procedures” (Wiley, New York, 1954) ch. 9.Google Scholar
  36. 36.
    W. H. HALL, Proc. Phys. Soc. Lond. 62 (1949) 741.CrossRefGoogle Scholar
  37. 37.
    H. ISHIZAWA, O. SAKURAI, N. MIZUTANI and M. KATO, Amer. Ceram. Soc. Bull. 65 (1986) 1399.Google Scholar
  38. 38.
    H. K. SCHMID, J. Amer. Ceram. Soc. 70 (1987) 367.CrossRefGoogle Scholar
  39. 39.
    C. J. HOWARD and R. J. HILL, J. Mater. Sci. 26 (1991) 127.CrossRefGoogle Scholar
  40. 40.
    T. KOSMAC, R. WAGNER, and N. CLAUSSEN, J. Amer. Ceram. Soc. 64 (1981) C-72.CrossRefGoogle Scholar
  41. 41.
    R. C. GARVIE, R. H. J. HANNINK and M. V. SWAIN, J. Mater. Sci. Lett. 1 (1982) 437.CrossRefGoogle Scholar
  42. 42.
    R. A. MILLER, J. L. SMIALEK and R. G. GARLICK, in “Advances in Ceramics”, Vol. 3, Science and Technology of Zirconia, edited by A. H. Heuer and I. W. Hobbs (American Ceramic Society, Columbus, Ohio, 1981) p. 241.Google Scholar
  43. 43.
    R. A. MILLER, R. G. GARLICK and J. L. SMIALEK, Amer. Ceram. Soc. Bull. 62 (1983) 1355.Google Scholar
  44. 44.
    V. LANTERI, A. H. HEUER and T. E. MITCHELL, in “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 118.Google Scholar
  45. 45.
    T. MITSUHASHI, M. ICHIARA and V. TATSUKE, J. Amer. Ceram. Soc. 57 (1974) 97.CrossRefGoogle Scholar
  46. 46.
    R. McMEEKING and A. G. EVANS, ibid. 65 (1982) 242.CrossRefGoogle Scholar
  47. 47.
    J. C. LAMBROPOULOS, ibid. 69 (1986) 218.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • N. M. Gokhale
    • 1
  • R. Dayal
    • 1
  • S. C. Sharma
    • 1
  • Ramji Lal
    • 1
  1. 1.Naval Chemical and Metallurgical LaboratoryBombayIndia

Personalised recommendations