Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5689–5692 | Cite as

Decomposition of carbon dioxide to carbon by hydrogen-reduced Ni(II)-bearing ferrite

  • H. Kato
  • T. Kodama
  • M. Tsuji
  • Y. Tamaura
  • S. G. Chang
Papers

Abstract

Hydrogen-activated Ni(II)-bearing ferrite, Ni 0.37 2+ Fe 0.49 2+ Fe 2.09 3+ O4.00, showed a high rate of decomposition of carbon dioxide to carbon at 300°C. This is based on the redox process of the Ni(II)-bearing ferrite with the spinel type of crystal structure. The rates of both activation by hydrogen gas and oxidation in carbon dioxide gas were much improved in the Ni (II)-bearing ferrite. The rate of decomposition was 0.178 mol h−1 for the activated Ni(II)-bearing ferrite and 0.005 92 mol h−1 for the activated magnetite in the batch mode, being 30 times larger. The rate of carbon dioxide decomposition was 16 times higher in the flow system in comparison with that of the activated magnetite.

Keywords

Oxidation Hydrogen Polymer Dioxide Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. SACCO, Jr and R. C. REID, Carbon 17 (1979) 459.CrossRefGoogle Scholar
  2. 2.
    R. C. WAGNER, R. CARRASQUILLO, J. EDWARDS and R. HOLMES, in “Proceedings of 18th Intersociety Conference on Environmental Systems”, SAE Technical Paper Series 880995, Society of Automotive Engineers, Warrendale PA (1988).Google Scholar
  3. 3.
    M. LEE, J. LEE and C. CHANAG, J. Chem. Eng. Jpn 23 (1990) 130.CrossRefGoogle Scholar
  4. 4.
    Y. TAMAURA and M. TABATA, Nature 346 (1990 225.CrossRefGoogle Scholar
  5. 5.
    K. NISHIZAWA, T. KODAMA, M. TABATA, T. YOSHIDA, M. TSUJI and Y. TAMAURA, J. Chem. Soc. Farad. Trans. 88 (1992) 2771.CrossRefGoogle Scholar
  6. 6.
    M. TABATA, Y. NISHIDA, T. KODAMA, K. MIMORI, T. YOSHIDA and Y. TAMAURA, J. Mater. Sci. 28 (1993) 971.CrossRefGoogle Scholar
  7. 7.
    M. TABATA, K. AKANUMA, K. NISHIZAWA, T. YOSHIDA, M. TSUJI and Y. TAMAURA, ibid. 28 (1993) 6753.CrossRefGoogle Scholar
  8. 8.
    T. KODAMA, K. TOMINAGA, M. TABATA, T. YOSHIDA and Y. TAMAURA, J. Amer. Ceram. Soc. 75 (1992) 1287.CrossRefGoogle Scholar
  9. 9.
    K. AKANUMA, M. TABATA, T. YOSHIDA, M. TSUJI and Y. TAMAURA, J. Mater. Chem., 3 (1993) 943.CrossRefGoogle Scholar
  10. 10.
    Y. TAMAURA, S. MECHAIMONCHIT and T. KATSURA, J. Inorg. Nucl. Chem. 43 (1980) 671.CrossRefGoogle Scholar
  11. 11.
    T. KATSURA, Y. TAMAURA and G. S. CHYO, Bull. Chem. Soc. Jpn 52 (1979) 96.CrossRefGoogle Scholar
  12. 12.
    Y. TAMAURA, P. V. BUDUAN and T. KATSURA, J. Chem. Soc. Dalton Trans. (1981) 1807.Google Scholar
  13. 13.
    M. KIYAMA, Bull. Chem. Soc. Jpn 47 (1974) 1646.CrossRefGoogle Scholar
  14. 14.
    K. A. KRAUS and G. E. MOORE, J. Am. Chem. Soc. 75 (1953) 1460.CrossRefGoogle Scholar
  15. 15.
    T. KODAMA, J. Mater. Chem. 2 (1992) 525.CrossRefGoogle Scholar
  16. 16.
    R. D. WALDRON, Phys. Rev. 99 (1955) 1972.CrossRefGoogle Scholar
  17. 17.
    T. MISAWA, K. HASHIMOTO and S. SHIMODAIRA, Boshoku Gijutsu (Corros. Eng.) 23 (1974) 17.Google Scholar
  18. 18.
    H. FRANKE and M. ROSENBERG, J. Magn. Mag. Mater. 9 (1979) 74.CrossRefGoogle Scholar
  19. 19.
    K. VOLENÍK, M. SEBERÍNI and J. NEID, Czech. J. Phys. B25 (1975) 1063.CrossRefGoogle Scholar
  20. 20.
    M. ROBBINS, G. K. WERTHEIM, R. C. SHERWOOD and D. N. E. BUCHANAN, J. Phys. Chem. Solids 32 (1971) 717.CrossRefGoogle Scholar
  21. 21.
    K. AKANUMA, K. NISHIZAWA, T. KODAMA, M. TABATA, K. MIMORI, T. YOSHIDA, M. TSUJI and Y. TAMAURA, J. Mater. Sci. 28 (1993) 860.CrossRefGoogle Scholar
  22. 22.
    J. G. McCARTY and H. WISE, J. Catal. 57 (1979) 406.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Kato
    • 1
  • T. Kodama
    • 1
  • M. Tsuji
    • 1
  • Y. Tamaura
    • 1
  • S. G. Chang
    • 2
  1. 1.Department of Chemistry, Research Center for Carbon Recycling and UtilizationTokyo Institute of TechnologyTokyoJapan
  2. 2.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations