Journal of Materials Science

, Volume 29, Issue 21, pp 5673–5679 | Cite as

An anomalous behaviour in the phase stability of the system Fe2O3 and NiO

  • S. Rajendran
  • V. Sitakara Rao


Iron-nickel mixed oxides containing up to 50 mol% of NiO were prepared by firing the corresponding co-precipitated hydrous oxides; characterization was performed by X-ray diffraction, infrared spectroscopy, magnetic susceptibility, electrical conductivity and thermoelectric power measurements. A non-stoichiometric ferrite phase was formed when a sample containing 20 mol% NiO was sintered at 1050°C. This phase had two- to three-fold higher conductivity than either Fe2O3 or the stoichiometric ferrite (NiFe2O4). The thermoelectric power of this phase indicated a sharp change of charge carriers from n- to p-type near 350°C. This non-stoichiometric ferrite phase was stable only in a small temperature range and dissociated into α-Fe2O3 and stoichiometric ferrite above 1200°C. Samples containing 5 and 10 mol% NiO also had small fractions of this non-stoichiometric ferrite phase when sintered at 1050°C.


Ferrite Electrical Conductivity Fe2O3 Charge Carrier Infrared Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. GORTER, Philips Res. Rep. 9 (1954) 295.Google Scholar
  2. 2.
    G. BLAZZE, Philips Res. Rep. Suppl. (1964).Google Scholar
  3. 3.
    J. B. GOODENOUGH, in “Magnetism and chemical bonds” (John Wiley and Sons, New York, 1976).Google Scholar
  4. 4.
    M. PAULUS, in “Preparative methods in solid state chemistry”, edited by Hagen Muller (Academic Press, London, 1972) p. 587.Google Scholar
  5. 5.
    D. J. CRAIK, in “Magnetic oxides, Part 1”, edited by D. J. Craik (John Wiley, New York, 1975) p. 67.Google Scholar
  6. 6.
    M. H. LEWIS, Phil. Mag. 20 (1969) 985.CrossRefGoogle Scholar
  7. 7.
    T. YAMAGUCHI and T. KIMURA, J. Amer. Ceram. Soc. 59 (1976) 333.CrossRefGoogle Scholar
  8. 8.
    A. H. HEUER and T. E. MITCHELL, in “Precipitation process in solids”, edited by K. C. Russell and H. T. Aaronson (Metals Society of the AMIE, Warrendale, PA, 1978.Google Scholar
  9. 9.
    W. T. DONLON, T. E. MITCHELL and A. H. HEUER, J. Mater. Sci. 17 (1982) 1389.CrossRefGoogle Scholar
  10. 10.
    D. M. ROY, R. ROY and E. F. OSBORN, J. Amer. Ceram. Soc. 36 (1953) 149.CrossRefGoogle Scholar
  11. 11.
    H. JAGODZINSKI and H. SAALFIELD, Z. Kiristallog. 110 (1958) 197.CrossRefGoogle Scholar
  12. 12.
    B. GILLOT, J. TYRONOMICZ and A. ROUSSETT, J. Mater. Res. Bull. 10 (1975) 775.CrossRefGoogle Scholar
  13. 13.
    F. CHASSAGNEUX and A. ROUSSET, J. Solid State Chem. 16 (1976) 161.CrossRefGoogle Scholar
  14. 14.
    B. GILLOT, F. BOUTON, J. F. FERRIOT, F. CHASSAGNEUX and A. ROUSSET, J. Solid State Chem. 21 (1977) 375.CrossRefGoogle Scholar
  15. 15.
    B. GILLOT, R. M. BENLOCIF and A. ROUSSET, J. Solid State Chem. 38 (1981) 219, 39 (1981) 329.CrossRefGoogle Scholar
  16. 16.
    B. GILLOT and F. JEMMALI, Phys. State. Sol. (a) 76 (1983) 601.CrossRefGoogle Scholar
  17. 17.
    S. RAJENDRAN, PhD thesis, IIT, Kharagpur, India (1983).Google Scholar
  18. 18.
    A. A. IBAHIM and G. A. EL-SHOBAKY, Thermochim. Acta 132 (1988) 117.CrossRefGoogle Scholar
  19. 19.
    Y. TAMAURA, T. SASAO and T. ITOH, J. Colloid Interface Sci. 136 (1990) 242.CrossRefGoogle Scholar
  20. 20.
    K. D. J. MacKENZIE and C. M. CARDILE, Thermochim. Acta 165 (1990) 207.CrossRefGoogle Scholar
  21. 21.
    M. LENGLET, R. GUILLAMET, J. LOPITAUX and B. HANNOYER, Mater. Res. Bull. 26 (1991) 575.Google Scholar
  22. 22.
    S. MUSIC, S. POPOVIC and S. DALIPI, J. Mater. Sci. 28 (1993) 1793.CrossRefGoogle Scholar
  23. 23.
    S. RAJENDRAN, V. SITAKARA RAO and H. S. MAITI, J. Solid State Chem. 53 (1984) 227.CrossRefGoogle Scholar
  24. 24.
    P. TARTE and J. PREUDHOMME, Spectrochim. Acta 29A (1973) 1301.CrossRefGoogle Scholar
  25. 25.
    H. S. MAITI, S. RAJENDRAN and V. SITAKARA RAO, Phys. Status Solidi (a) 84 (1984) 631.CrossRefGoogle Scholar
  26. 26.
    R. N. BLUMENTHAL and D. H. WHITE, J. Amer. Ceram. Soc. 44 (1961 508.CrossRefGoogle Scholar
  27. 27.
    G. G. CHARETTE and S. N. FLENGAS, J. Electrochem. Soc. 115 (1968) 796.CrossRefGoogle Scholar
  28. 28.
    P. E. C. BRYANT and W. W. SMELTZER, J. Electrochem. Soc. 116 (1969) 1409.CrossRefGoogle Scholar
  29. 29.
    M. ISHII, M. NAKAHIRA and T. YAMANKA, Solid State Commun. 11 (1972) 209.CrossRefGoogle Scholar
  30. 30.
    J. H. DE WIT, A. F. BROERSMA and STROBAND, J. Solid State Chem. 37 (1981) 242.27Google Scholar
  31. 31.
    A. D. PELTON, H. SCHMALZRIED and J. STICHER, J. Phys. Chem. Solids 40 (1979) 1103.CrossRefGoogle Scholar
  32. 32.
    Y. MIYATA, J. Phys. Chem. Jpn 16 (1961) 206.CrossRefGoogle Scholar
  33. 33.
    A. A. SOMOKHVALOV and A. G. RUSTAMOV, Soviets Phys. Solid State 7 (1965) 961.Google Scholar
  34. 34.
    B. A. GRIFFITHS, D. ELWELL and R. PARKER, Phil. Mag. 22 (1970) 163.CrossRefGoogle Scholar
  35. 35.
    T. YAMADA, J. Phys. Soc. Jpn 38 (1975) 1378.30.CrossRefGoogle Scholar
  36. 36.
    C. OKAZAKI, J. Phys. Soc. Jpn 15 (1960) 2013.CrossRefGoogle Scholar
  37. 37.
    P. S. JAIN and V. S. DARSHANE, Indian J. Chem. 19A (1980) 1050.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Rajendran
    • 1
  • V. Sitakara Rao
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyWest BengalIndia

Personalised recommendations