Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5625–5630 | Cite as

Effects of mono-substituting chelating agents on BaTiO3 prepared by the sol-gel process

  • Woei-Kwo Kuo
  • Yong-Chien Ling
Papers

Abstract

BaTiO3 of various grain size was prepared by the sol-gel process from Ti (OR)4 (R = isoC3H7 or C4H9)+Ba(CH3COO)2+chelating agent CH3COCH2COR′(R′ = CH3 or OC2H5) in a composition of equal molar ratio. Fourier transform infrared and fast atom bombardment mass spectrometry analyses suggested that the chelating agent substituted for one of the OR groups in Ti (OR)4 to form Ti (OR)3 (CH3COCHCOR′). The gelation time varied from 3 to 5 months and diminished with increasing steric hindrance. The amorphous gel was crystallized into cubic phase BaTiO3 upon heating above 650°C. The tetragonal phase was obtained after heating for 1 h at 1350°C with the theoretical Ba/Ti ratio and 1.0096 c/a value. The measured dielectric constants diminished with increasing grain size. The results illustrated the merits of altering the chemistry of the precursors to control the properties of the BaTiO3.

Keywords

Polymer Grain Size Fourier Mass Spectrometry Fourier Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. SYAMAPRASAD, R. KGALGALI and B. C. MOHANTY, J. Amer. Ceram. Soc. 70 (1987) 147.CrossRefGoogle Scholar
  2. 2.
    T. R. ARMSTRONG, K. A. YOUNG and R. C. BUCHANAN, ibid, 73 (1990) 700.CrossRefGoogle Scholar
  3. 3.
    X. W. ZHANG, Y. H. HAN, M. LAI and D. M. SMITH, ibid. 70 (1987) 100.CrossRefGoogle Scholar
  4. 4.
    H. L. HSIEH and T. F. FANG, ibid. 73 (1990) 1566.CrossRefGoogle Scholar
  5. 5.
    G. KOSCHEK and E. KUBALEK, ibid. 68 (1985) 582.CrossRefGoogle Scholar
  6. 6.
    K. KISS, J. MAGDER, M. S. VUKASOVICH and R. J. LOCKHART, ibid. 49 (1966) 291.CrossRefGoogle Scholar
  7. 7.
    D. Y. WANG and UMEYA, ibid. 73 (1990) 669.CrossRefGoogle Scholar
  8. 8.
    J. P. ZHONG, M. Y. ZHAO and H. WANG, Ceram. Int. 16 (1990) 85.CrossRefGoogle Scholar
  9. 9.
    T. F. LIN and C. T. CHU, J. Amer. Ceram. Soc. 73 (1990) 531.CrossRefGoogle Scholar
  10. 10.
    J. REHSPRINGER and J. C. BERNIER, Mater. Res. Soc. Symp. Proc. 72 (1986) 67.CrossRefGoogle Scholar
  11. 11.
    P. P. RHULE and S. H. RISBUD, Adv. Ceram. Mater. 3 (1988) 183.CrossRefGoogle Scholar
  12. 12.
    J. LIVAGE, C. SANCHEZ, M. HENRY and S. DOEUFF, Solid State Ionics 32 (1989) 633.CrossRefGoogle Scholar
  13. 13.
    A. YAMAMOTO and S. KAMBARA, J. Amer. Chem.Soc. 79 (1957) 4344.CrossRefGoogle Scholar
  14. 14.
    S. J. MILNE and S. H. PYKE, J. Amer. Ceram. Soc. 74 (1991) 1407.CrossRefGoogle Scholar
  15. 15.
    T. YOKO, K. KAMIYA and K. TANAKA, J. Mater. Sci. 25 (1990) 3922.CrossRefGoogle Scholar
  16. 16.
    R. VIVEKANANDAN and T. R. KUTTY, Powd. Technol. 57 (1989) 181.CrossRefGoogle Scholar
  17. 17.
    K. UCHION, E. SANDANAGA and T. HIROSE, J. Amer. Ceram. Soc. 72 (1989) 1555.CrossRefGoogle Scholar
  18. 18.
    G. ARLT, F. HENNINGS and G. DE WITH, J. Appl. Phys. 58 (1985) 1619.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Woei-Kwo Kuo
    • 1
  • Yong-Chien Ling
    • 1
  1. 1.Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations