Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5612–5614 | Cite as

Electron holography reveals the internal structure of palladium nano-particles

  • L. F. Allard
  • E. Voelkl
  • D. S. Kalakkad
  • A. K. Datye
Papers

Abstract

Phase images of palladium particles 5–15 nm in diameter were reconstructed from electron holograms acquired using the coherent beam of a field emission transmission electron microscope. The Pd particles were supported on amorphous silica microspheres, 0.2 μm in diameter. A central contrast feature, suggestive of an internal void, was visible on most of the Pd particles. The phase profiles obtained from the holograms matched computed phase profiles confirming the existence of an internal void in these nano-particles. This is the first observation where internal morphology at the nano-scale has been unambiguously determined. While the observed voids are similar in scale to those occurring in recently reported hollow nanometre-sized particles, such as graphite polyhedra [9, 10], this represents the first report of such voids in metallic particles that are single crystals.

Keywords

Palladium Amorphous Silica Metallic Particle Coherent Beam Contrast Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. BOUDART, in Proceedings of the 6th International Congr. Catalysis, Vol. 1, edited by G. C. Bond, P. B. Wells and F. C. Tompkins (The Chemical Society, London, 1977) p. 1.Google Scholar
  2. 2.
    A. HOWIE, Farad. Disc. Chem. Soc. 92 (1992) 1.Google Scholar
  3. 3.
    L. D. MARKS and D. J. SMITH, Nature 303 (1983) 316.CrossRefGoogle Scholar
  4. 4.
    P. L. GAI, M. J. GORINGE and J. C. BARRU, J. Microsc. 142 (1986) 9.CrossRefGoogle Scholar
  5. 5.
    A. K. DATYE, A. D. LOGAN and N. J. LONG, J. Catal. 109 (1988) 76.CrossRefGoogle Scholar
  6. 6.
    G. MÖLLENSTEDT and M. KELLER, Z. Physik 1148 (1957) 34.CrossRefGoogle Scholar
  7. 7.
    L. REIMER, “Transmission electron microscopy”, 2nd Edn (Springer-Verlag, New York, 1984) p. 57.CrossRefGoogle Scholar
  8. 8.
    M. GAJDARDZISKA-JOSIFOVSKA, M. R. McCARTNEY, W. J. de RUIJTER, D. J. SMITH, J. K. WEISS and J. M. ZUO, Ultramicroscopy 53 (1993) 285.CrossRefGoogle Scholar
  9. 9.
    E. UGARTE, Chem. Phys. Lett. 207 (1993) 473.CrossRefGoogle Scholar
  10. 10.
    Y. SAITO, T. YOSHIKAWA, M. INAGAKI, M. TOMITA and T. HAYASHI, Chem. Phys. Lett. 204 (1993) 277.CrossRefGoogle Scholar
  11. 11.
    W. STÖBER, A. FINK and E. BOHN, J. Colloid Interface Sci. 26 (1968) 62.CrossRefGoogle Scholar
  12. 12.
    G. MÖLLENSTEDT und H. DÜKER, Z. Physik 145 (1956) 377.CrossRefGoogle Scholar
  13. 13.
    H. LICHTE, Ultramicroscopy 20 (1986) 239.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. F. Allard
    • 1
  • E. Voelkl
    • 1
  • D. S. Kalakkad
    • 2
  • A. K. Datye
    • 2
  1. 1.High Temperature Materials LaboratoryOak Ridge National LaboratoryOak RidgeUSA
  2. 2.The Department of Chemical & Nuclear EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations