Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5599–5606 | Cite as

High-resolution electron microscopy of nanocrystalline Ni-Al alloys: instability of ordered structure and dynamic behaviour of grain boundaries

  • Tokushi Kizuka
  • Noboru Mitarai
  • Nobuo Tanaka
Papers

Abstract

High-resolution transmission electron microscopy was performed on vacuum-deposited nanocrystalline nickel aluminide films. Several nickel aluminide ordered structures, i.e. L12(Ni3Al)-, B2(NiAl)-, D513(Ni2Al3)- and D020(NiAl3)-type structures, were observed in the deposited films. The L12 and B2 ordered structures became unstable with decreasing grain sizes. The critical grain size on transformation from the L12- and B2-type ordered structures into disordered structures was ca. 5 nm at ambient temperatures. High atomic diffusion, sufficient for grain growth, and an increase in the ordering occurred just above 400°C in the nanocrystalline Ni-Al films with L12- and B2-type structures. The diffusion bonding process, at ambient temperatures, between Ni-Al nanocrystallites with an L12-type structure was observed dynamically at atomic resolution under strong electron irradiation. It was found that the nanocrystallites rotated and slid without crack generation, and neck-growth proceeded even at ambient temperatures.

Keywords

Grain Size Transmission Electron Microscopy Ambient Temperature Ni2Al3 Bonding Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. FLINN, Trans TMS-AIME 218 (1960) 145.Google Scholar
  2. 2.
    K. AOKI and O. IZUMI, Trans Jpn. Inst. Met. 43 (1979) 1190.CrossRefGoogle Scholar
  3. 3.
    T. S. SRIVATSAN, S. ANAND, S. SRIRAM and T. S. SUDARSHAN, J. Mater. Sci. 27 (1992) 5939.CrossRefGoogle Scholar
  4. 4.
    D. E. MEYERS and A. J. ARDELL, Acta Metall Mater. 41 (1993) 2601.CrossRefGoogle Scholar
  5. 5.
    H. LIN and D. P. POPE, Acta Metall. Mater. 41 (1993) 553.CrossRefGoogle Scholar
  6. 6.
    T. H. CHUNG, Y. C. PAN and S. E. HSU, Metall. Trans. A22 (1991) 1801.CrossRefGoogle Scholar
  7. 7.
    E. M. SHULSON, Res. Mech. Lett. 1 (1981) 519.Google Scholar
  8. 8.
    E. M. SHULSON and D. R. BARKER, Scripta Metall. 17 (1983) 519.CrossRefGoogle Scholar
  9. 9.
    J. KARCH, R. BIRRINGER and H. GLEITER, Nature 330 (1989) 556.CrossRefGoogle Scholar
  10. 10.
    K. ISHIZUKA, Ultramicrosc. 5 (1980) 55.CrossRefGoogle Scholar
  11. 11.
    R. W. CAHN, P. A. SIEMERS, J. E. GEIGER and P. BARDHAN, Acta Metall. 35 (1987) 37.Google Scholar
  12. 12.
    H. C. LIU and T. E. MITCHELL, Acta Metall. 31 (1983) 863.CrossRefGoogle Scholar
  13. 13.
    M. D. BARÓ, S. SURINACH, J. MALAGELADA, M. T. CLAVAGUERA-MORA, S. GIALANELLA and R. W. CAHN, Acta Metall. Matter. 41 (1993) 1065.CrossRefGoogle Scholar
  14. 14.
    J. S. C. JANG and C. C. KOCH, J. Matter. Res. 5 (1990) 498.CrossRefGoogle Scholar
  15. 15.
    P. B. HIRSCH, A. HOWIE, R. NICHOLSON, D. W. PASHLEY and M. J. WHELAN “Electron microscopy of thin crystals” (Butterworth, London, 1965) p. 143.Google Scholar
  16. 16.
    H. FUJITA, ISIJ, Inst., 30 (1990) 70.CrossRefGoogle Scholar
  17. 17.
    K. MUROOKA, M. MITOME, Y. TANISHIRO and K. TAKAYANAGI, J. Vac. Sci. Tech., A8 (1990) 153.CrossRefGoogle Scholar
  18. 18.
    T. KIZUKA and N. TANAKA, Phil. Mag. Lett., 69 (1994) 135.CrossRefGoogle Scholar
  19. 19.
    R. BIRRINGER, H. HAHN, H. HOFLER, J. KARCH and H. GLEITER, Defect and Diffusion Forum, 59 (1988) 17.CrossRefGoogle Scholar
  20. 20.
    J. W. EDINGTON, K. N. MELTON and C. P. CUTLER, Prog. Mater. Sci. 21 (1976) 61.CrossRefGoogle Scholar
  21. 21.
    F. WAKAI, S. SAKAGUCHI and Y. MATSUNO, Adv. Ceram. Mater. 1 (1986) 259.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Tokushi Kizuka
    • 1
  • Noboru Mitarai
    • 1
  • Nobuo Tanaka
    • 1
  1. 1.Department of Applied Physics, School of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations