Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5576–5582 | Cite as

Compatibility between PAN-based carbon fibres and Mg8Li alloy during the pressure infiltration process

  • S. Kudela
  • V. Gergely
  • E. Jänsch
  • A. Hofmann
  • S. Baunack
  • S. Oswald
  • K. Wetzig
Papers

Abstract

The interaction of PAN-based T800H type carbon fibres, which had been coated with (i) pyrocarbon and (ii) pyrocarbon+SiC protective layers, was studied by means of SEM, energy-dispersive X-ray analysis and Auger electron spectroscopy. The interaction occurred during the pressure infiltration process at temperatures from 898 to 908 K and at contact times of 4–30 s. As detected by AES measurements, both Mg and Li penetrated throughout the carbon fibres, and Li2C2 was formed without remarkable reaction zone occurrence, which led to carbon fibre degradation. The pyrocarbon layer (about 50 nm thick) demonstrated a good protective efficiency and the corresponding metal-matrix composite exhibited satisfying strength characteristics; nevertheless, the influence of processing variables (temperature, time) was obvious. On the other hand, the double-coated pyrocarbon+SiC carbon fibres were strongly affected by Li2C2 formation.

Keywords

Auger Carbon Fibre Auger Electron Spectroscopy Electron Spectroscopy Protective Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. WILCOX and A. H. CLAUER, Trans. Met. Soc. AIME 245 (1969) 935.Google Scholar
  2. 2.
    V. S. IVANOVA, I. M. KOPYEV, F. M. YELKHIN and Yu. E. BUSALOV, “Alyuminievye i magniyevye splavy armirovanye voloknami” (Nauka, Moscow, 1974) p. 199.Google Scholar
  3. 3.
    J. F. MASON, C. M. WARWICK, P. J. SMITH, J. A. CHARLES and T. W. CLYNE, J. Mater. Sci. 24 (1989) 3934.CrossRefGoogle Scholar
  4. 4.
    R. C. BOEHM and A. BANERJEE, J. Chem. Phys. 96 (1992) 1150.CrossRefGoogle Scholar
  5. 5.
    T. WADA, G. T. ELDIS and D. L. ALBRIGHT, US Patent 4 657 065, (1987).Google Scholar
  6. 6.
    Torayca Data Sheet (Toray Deutschland GmBH, 1991).Google Scholar
  7. 7.
    H. PLÄNITZ, G. BOCHMANN, W. WAGNER, M. SEIDLER and E. WOLF, Wiss. Z. TU Chemnitz 32 (1990) 218.Google Scholar
  8. 8.
    JANAF Thermochemical Tables, 2nd Edn, Vol. 37 (US Department of Commerce NSRDS-NBS 1971).Google Scholar
  9. 9.
    B. D. COLEMAN, J. Mech. Phys. Solids 7 (1958) 60.CrossRefGoogle Scholar
  10. 10.
    B. JUNGBLUT and E. HOINKIS, Phys. Rev. B40 (1989) 10810.CrossRefGoogle Scholar
  11. 11.
    J. MAIREE and J. MERING, “Graphitization of Soft Carbon” in “Chemistry and Physics of Carbon”, edited by Dekker, NY, Walker, Vol. 6 (Ph. I. 1970) p. 125.Google Scholar
  12. 12.
    G. MARX, P. W. MARTIN, N. MEYER and K. NESTLER, Fresenius J. Anal. Chem. 346 (1993) 181.CrossRefGoogle Scholar
  13. 13.
    W. THAN, A. HOFMANN and G. LEONHARDT, ibid. 346 (1993) 37.CrossRefGoogle Scholar
  14. 14.
    Y-S. PARK, M-H. KIM And J-Y. LEE, J. Mater. Sci. Lett. 8 (1989) 321.CrossRefGoogle Scholar
  15. 15.
    K. MINATO and K. FUKUDA, J. Mater. Sci. 23 (1988) 699.CrossRefGoogle Scholar
  16. 16.
    K. SCHEMME, “Entwicklung superleichter Magnesium-Werkstoffe” (VDI Verlag GmbH, Düsseldorf, 1993).Google Scholar
  17. 17.
    D. GUERARD and A. HEROLD, Carbon 13 (1975) 337.CrossRefGoogle Scholar
  18. 18.
    M. ASANO, K. KUBO and H. KIMURA, J. Nucl. Mater. 102 (1981) 353.CrossRefGoogle Scholar
  19. 19.
    D. A. KATSKOV, B. V. LVOV and V. I. DANILKIN, Zh. Prikl. Spektrosk. 27 (1977) 685.Google Scholar
  20. 20.
    J. VIALA, P. FORTIER, G. CLAVEYROLAS, H. VINCENT and J. BOUIX, J. Mater. Sci. 26 (1991) 4977.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Kudela
    • 1
  • V. Gergely
    • 1
  • E. Jänsch
    • 2
  • A. Hofmann
    • 2
  • S. Baunack
    • 3
  • S. Oswald
    • 3
  • K. Wetzig
    • 3
  1. 1.Institute of Materials and Machine MechanicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Materials ResearchTechnical University Chemnitz-ZwickauChemnitzGermany
  3. 3.Institute for Solid State and Materials Research, Institute for Solid State Analytics and Structural ResearchDresdenGermany

Personalised recommendations