Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5541–5550 | Cite as

Interfacial debonding and fibre pull-out stresses

Part V A methodology for evaluation of interfacial properties
  • Li-Min Zhou
  • Yiu-Wing Mai
  • Caroline Baillie
Papers

Abstract

Based on a theoretical model developed previously by the authors in Part II of this series for a single fibre pull-out test, a methodology for the evaluation of interfacial properties of fibre-matrix composites is presented to determine the interfacial fracture toughness Gc, the friction coefficient μ, the radial residual clamping stress qo and the critical bonded fibre length zmax. An important parameter, the stress drop Δσ, which is defined as the difference between the maximum debond stress σ d * and the initial frictional pull-out stress σfr, is introduced to characterize the interfacial debonding and fibre pull-out behaviour. The maximum logarithmic stress drop, In(Δσ), is obtained when the embedded fibre length L is equal to the critical bonded fibre length zmax. The slope of the In(Δσ)-L curve for L bigger than zmax is found to be a constant that is related to the interfacial friction coefficient μ. The effect of fibre anisotropy on fibre debonding and fibre pull-out is also included in this analysis. Published experimental data for several fibre-matrix composites are chosen to evaluate their interfacial properties by using the present methodology.

Keywords

Stress Drop Interfacial Debonding Zmax Interfacial Fracture Toughness Fibre Debonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. BUDIANSKY, J. W. HUTCHINSON and A. G. EVANS, J. Mech. Phys. Solids 34 (1986) 167.CrossRefGoogle Scholar
  2. 2.
    H. STANG and S. P. SHAH, J. Mater. Sci. 21 (1986) 953.CrossRefGoogle Scholar
  3. 3.
    Y. C. GAO, Y. W. MAI and B. COTTERELL, J. Appl. Math. Phys. (ZAMP) 39 (1988) 550.CrossRefGoogle Scholar
  4. 4.
    L. M. ZHOU, Y. W. MAI and Y. C. GAO, in “Facture Mechanics of Ceramics”, Vol. 9, edited by R. C. Bradt, D. P. H. Hasselman, D. Munz and M. Sakai (Plenum, New York, 1992) p. 29.CrossRefGoogle Scholar
  5. 5.
    J. K. KIM, L. M. ZHOU and Y. W. MAI, in “Handbook of Advanced Materials Testing”, edited by N. P. Cheremisinoff (Dekker, New York, 1994) p. 327.Google Scholar
  6. 6.
    C. H. HSUEH, Mater. Sci. Engng A130 (1990) L11.CrossRefGoogle Scholar
  7. 7.
    C. H. HSUEH, Mater. Sci. Engng A123 (1990) 1.CrossRefGoogle Scholar
  8. 8.
    J. K. KIM, C. BAILLIE and Y. W. MAI, J. Mater. Sci. 27 (1992) 3143.CrossRefGoogle Scholar
  9. 9.
    L. M. ZHOU, J. K. KIM and Y. W. MAI, ibid. 27 (1992) 3155.CrossRefGoogle Scholar
  10. 10.
    J. K. KIM, L. M. ZHOU and Y. W. MPAI, ibid. 28 (1993) 3923.CrossRefGoogle Scholar
  11. 11.
    J. K. KIM, S. V. LU and Y. W. MAI, ibid. 29 (1994) p. 554.CrossRefGoogle Scholar
  12. 12.
    E. P. BUTLER, E. R. FULLERJr and H. M. CHAN, Mater. Res. Soc. Symp. Proc. 170 (1990) 17.CrossRefGoogle Scholar
  13. 13.
    V. M. KARBHARI and D. J. WILKINS, Scripta. Metall. Mater. 24 (1990) 1197.CrossRefGoogle Scholar
  14. 14.
    A. TAKAKU and R. G. C. ARRIDGE, J. Phys. D: Appl. Phys. 6 (1973) 2038.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Li-Min Zhou
    • 1
  • Yiu-Wing Mai
    • 1
  • Caroline Baillie
    • 1
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic EngineeringUniversity of SydneySydneyAustralia

Personalised recommendations