Journal of Materials Science

, Volume 29, Issue 21, pp 5529–5540 | Cite as

Nanoindentation studies of the chemomechanical effect in sapphire

  • S. V. Hainsworth
  • T. F. Page


For the first time, nanoindentation techniques have been used to study chemomechanical effects due to water, alcohols and myristic acid on the detailed surface mechanical response (e.g. elastic flexure, stiffness, dislocation nucleation and plasticity) of (10–12) single-crystal sapphire. Because the magnitude of surface tension forces at these small scales can be comparable with the applied load, the experiments have been performed on samples annealed, quenched into various environments and tested after the liquid had been allowed to evaporate. At low loads and indentor displacements (i.e. ⩽ 60 nm), two separate effects have been identified: the occurrence of a soft surface layer together with significant differences in the elastic-plastic deformation transition. The experiments were repeated after a 4 week exposure to ambient laboratory atmosphere and in each case, the behaviour had moved towards that displayed by the original water-quenched sample. The results are explained in terms of physisorption and chemisorption on dislocation nucleation behaviour and subsequent plasticity. At higher loads, the results showed that the previously conflicting evidence from microhardness testing concerning these effects is not surprising, because no differences in the load-displacement responses were seen. However, scanning electron microscopy of the indentations showed significant differences in the deformation behaviour. Low-load creep experiments were also performed but, in contrast to reported microhardness responses, showed no real evidence for time-dependent deformation behaviour. The results presented clearly show the advantages and potential of nanoindentation techniques for investigating these effects.


Sapphire Myristic Acid Surface Tension Force Creep Experiment Dislocation Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. BULL and T. F. PAGE, J. Phys. D Appl Phys. 22 (1989) 941.CrossRefGoogle Scholar
  2. 2.
    T. E. FISCHER, Ann. Rev. Mater. Sci. 18 (1988) 303.CrossRefGoogle Scholar
  3. 3.
    J. T. CZERNUSZKA and T. F. PAGE, J. Microsc. 140 (1985) 159.CrossRefGoogle Scholar
  4. 4.
    T. SUGITA, K. UEDA and Y. KANEMURA, Wear 97 (1984) 1.CrossRefGoogle Scholar
  5. 5.
    S. M. WEIDERHORN and H. JOHNSON, J. Am. Ceram. Soc. 58 (1975) 342.CrossRefGoogle Scholar
  6. 6.
    A. R. C. WESTWOOD, N. H. MACMILLAN and R. S. KALYONCU, J. Am. Ceram. Soc. 56 (1973) 258.CrossRefGoogle Scholar
  7. 7.
    N. H. MACMILLAN, R. D. H. HUNTINGTON and A. R. C. WESTWOOD, J. Mater. Sci. 9 (1974) 697.CrossRefGoogle Scholar
  8. 8.
    A. R. C. WESTWOOD, J. S. AHEARN and J. J. MILLS, Colloids Surfaces 2 (1981) 1.CrossRefGoogle Scholar
  9. 9.
    N. H. MACMILLAN, in “Surface Effects in Crystal Plasticity”, edited by R. M. Latanision and J. T. Fourie (Noordhof Int., Leyden, 1977) p. 629.CrossRefGoogle Scholar
  10. 10.
    P. B. HIRSCH, J. Microsc. 118 (1980) 3.CrossRefGoogle Scholar
  11. 11.
    R. E. CUTHRELL, J. Mater. Sci. 14 (1979) 612.CrossRefGoogle Scholar
  12. 12.
    J. H. WESTBROOK and P. J. JORGENSEN, Trans AIME 233 (1965) 425.Google Scholar
  13. 13.
    A. R. C. WESTWOOD and D. L. GOLDHEIM, J. Appl. Phys. 39 (1968) 3401.CrossRefGoogle Scholar
  14. 14.
    W. W. WALKER, in “The Science of Hardness Testing and it's Research Applications”, edited by J. H. Westbrook and J. Conrad (ASM, Metals Park, OH, 1973) pp. 258–73.Google Scholar
  15. 15.
    J. T. CZERNUSZKA and T. F. PAGE, J. Mater. Sci. 22 (1987) 3917.CrossRefGoogle Scholar
  16. 16.
    J. B. PETHICA, R. HUTCHINGS and W. C. OLIVER, Philos. Mag. A 48 (1983) 593.CrossRefGoogle Scholar
  17. 17.
    J. D. J. ROSS, H. M. POLLOCK, J. C. PIVIN and J. TAKADOUM, Thin Solid Films 148 (1987) 171.CrossRefGoogle Scholar
  18. 18.
    M. F. DOERNER, D. S. GARDNER and W. D. NIX, J. Mater. Res. 1 (1986) 845.CrossRefGoogle Scholar
  19. 19.
    T. F. PAGE, W. C. OLIVER and C. J. McHARGUE, ibid. 7 (1992) 450.CrossRefGoogle Scholar
  20. 20.
    G. M. PHARR and W. C. OLIVER, MRS Bull. 17 (1992) 28.CrossRefGoogle Scholar
  21. 21.
    T.F. PAGE and S. V. HAINSWORTH, Surf. Coat. Technol. A 61 (1993) 201.CrossRefGoogle Scholar
  22. 22.
    S. P. BAKER, T. W. BARBEE Jr and W. D. NIX, Mater. Res. Soc. Symp. Proc. 239 (1992) 319.CrossRefGoogle Scholar
  23. 23.
    T. P. WEIHS AND J. B. PETHICA, ibid. 239 (1992) 325.CrossRefGoogle Scholar
  24. 24.
    S. V. HAINSWORTH, PhD Thesis, University of Newcastle upon Tyne (1993).Google Scholar
  25. 25.
    J. B. PETHICA and W. C. OLIVER, Mater. Res. Soc. Symp. Proc. 130 (1989) 13.CrossRefGoogle Scholar
  26. 26.
    J. C. KNIGHT, T. F. PAGE and I. M. HUTCHINGS, Surf. Eng. 5 (1989) 213.CrossRefGoogle Scholar
  27. 27.
    A. J. WHITEHEAD and T. F. PAGE, Thin Solid Films 220 (1992) 277.CrossRefGoogle Scholar
  28. 28.
    P. J. BURNETT and T. F. PAGE, J. Mater. Sci. 19 (1984) 3524.CrossRefGoogle Scholar
  29. 29.
    B. T. KELLY, “Irradiation Damage to Solids” (Pergamon, Oxford, 1966) p. 140.Google Scholar
  30. 30.
    P. B. HIRSCH, “The Physics of Metals: Defects” (Cambridge University Press, Cambridge, 1975) p. 182.Google Scholar
  31. 31.
    G. M. PHARR, Mater. Res. Soc. Symp. Proc. 239 (1992) 301.CrossRefGoogle Scholar
  32. 32.
    T. WRIGHT and T. F. PAGE, Surf. Coat. Technol. 54/55 (1992) 557.CrossRefGoogle Scholar
  33. 33.
    P. M. SARGENT and T. F. PAGE, J. Mater. Sci. 20 (1985) 2388.CrossRefGoogle Scholar
  34. 34.
    D. TABOR, “Hardness of Metals” (Clarendon Press, Oxford, 1951).Google Scholar
  35. 35.
    P. J. BURNETT and T. F. PAGE, J. Mater. Sci. Lett. 4 (1985) 1364.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. V. Hainsworth
    • 1
  • T. F. Page
    • 1
  1. 1.Materials Division, Department of Mechanical, Materials and Manufacturing EngineeringUniversity of NewcastleNewcastle upon TyneUK

Personalised recommendations