Advertisement

Journal of Materials Science

, Volume 29, Issue 21, pp 5515–5523 | Cite as

Simulation of disruption loads on first-wall high-temperature materials

  • K. Wetzig
  • S. Menzel
  • U. Rossek
  • B. Schultrich
Papers

Abstract

The behaviour of carbon materials under thermal load in fusion reactors has been simulated by laser-pulse irradiation in a scanning electron microscope (SEM). In this way material damage, such as thermal shock crack formation and propagation, and erosion behaviour, can be studied in situ in the SEM with high lateral resolution. The dependence of damage initiation and propagation on the laser-beam parameters (pulse number, energy, spot size, spot duration and energy density), is of special interest. The damage behaviour is strongly determined by special materials structures. Because of its fibre reinforcement, the investigated CFC composite materials proved to be more stable to erosion and crack formation than homogeneous finegrained graphites. High-temperature damage may be diminished by the use of carbon materials with creep-resistant components.

Keywords

Carbon Material Thermal Shock Erosion Behaviour Thermal Load Crack Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. LINKE, M. AKIBA, M. ARAKI, A. BENZ, H. BOLT, H. HOVEN, K. KOIZLIK, H. NICKEL, M. SEKI and E. WALLURA, in “Proceedings of the 16th Symposium on Fusion Technology”, edited by B. E. Keen, M. Huguet, R. Hemsworth (Elsevier, B.V, Amsterdam, 1991) p. 428.Google Scholar
  2. 2.
    J. G. van der LAAN, J. Nucl. Mater. 162–164 (1989) 964.CrossRefGoogle Scholar
  3. 3.
    B. SCHULTRICH and K. WETZIG, J. Mater. Sci. 22 (1987) 3361.CrossRefGoogle Scholar
  4. 4.
    K. WETZIG, J. EDELMANN, W. FISCHER and H. MÜLLER, Scanning 9 (1987) 99.CrossRefGoogle Scholar
  5. 5.
    W. HAUFFE and B. SCHULTRICH, Prakt. Metall. 25 (1988) 517.Google Scholar
  6. 6.
    R. HüBEL, Private communication (1991).Google Scholar
  7. 7.
    W. DELLE, J. LINKE, H. NICKEL and E. WALLURA, “Spezielle Berichte der Kernforschungsanlage Jülich”, No. 401, edited by K. F. A. Jülich and H.-A. Bahr (1987).Google Scholar
  8. 8.
    B. SCHULTRICH, H.-J. WEISS and H.-A. BAHR, in “Proceedings of the Workshop on Thermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics”, edited by G. A. Schneider and G. Petzow (Kluwer Academic, Dortrecht, 1993).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Wetzig
    • 1
  • S. Menzel
    • 1
  • U. Rossek
    • 1
  • B. Schultrich
    • 2
  1. 1.Institut für Festkörperanalytik und Strukturforschung im Institut für Festkörper- und WerkstofforschungDresdenGermany
  2. 2.Fraunhofer-Einrichtung für Werkstoffphysik und Schichttechnologie DresdenDresdenGermany

Personalised recommendations