Journal of Materials Science

, Volume 30, Issue 13, pp 3552–3560 | Cite as

Acoustic emission during the tensile deformation of Incoloy 901 superalloy

  • Daining Fang
  • Avraham Berkovits


Observations have been made on the acoustic emission (AE) response related to the deformation-damage mechanisms during tensile tests of a common engine material, Incoloy 901 superalloy. Results show that dislocation motion, twinning and inclusion fracture cooperated to generate acoustic emission during tensile deformation of Incoloy 901. Based on AE recorded results and microstructural examination, a dislocation-saturation model was developed to describe AE activity during elastic and plastic deformation, and to distinguish between the AE response in the yield region and in the work-hardening region. Furthermore, the effects of strain rate and loading methods on AE outputs were examined. The dependence of acoustic emission on dislocation motion and saturation, deformation twinning, and decohesion and fracture of inclusions and secondary particles are discussed.


Polymer Plastic Deformation Tensile Test Acoustic Emission Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. R. HEIPLE and S. H. CARPENTER, Acoustic emission from dislocation motion, in Acoustic Emission, edited by J. R. MATTHEWS (Gordon and Breach Publishers, New York, 1983) p. 33.Google Scholar
  2. 2.
    H. N. G. WADLEY, C. B. SCRUBY and J. H. SPEAK, Inter. Metals Rev. 2, Review 249 (1980) p. 41.Google Scholar
  3. 3.
    W. SCHAARWÄCHTER and H. EBENER, Acta Metall. 38 (1983) 195.CrossRefGoogle Scholar
  4. 4.
    C. R. HEIPLE and S. M. CARPENTER, J. Acoustic Emission 6 (1987) 177.Google Scholar
  5. 5.
    P. P. GILIS and M. A. HAMSTAD, Mater. Sci. Eng. 14 (1974) 103.CrossRefGoogle Scholar
  6. 6.
    C. R. HEIPLE and S. S. CRISTIANSEN, J. Acoustic Emission 5 (1986) 85.Google Scholar
  7. 7.
    C. R. HEIPLE and S. M. CARPENTER, J. Acoustic Emission 6 (1987) 215.Google Scholar
  8. 8.
    S. L. van DOREN, R. B. POND and R.E. GREEN, Jr., J. Appl. Phys. 47 (1976) 4343.CrossRefGoogle Scholar
  9. 9.
    M. N. BASSIM and M. VEILLETTE, Mater. Sci. Eng. 50 (1981) 285.CrossRefGoogle Scholar
  10. 10.
    L. R. F. ROSE, J. Nondestructive Evaluation 1 (1980) 149.CrossRefGoogle Scholar
  11. 11.
    H. B. TEOH and K. ONO, J. Acoustic Emission 6 (1987) 1.Google Scholar
  12. 12.
    S. L. MCBRIDE, J. W. MACLACHLAN and B. P. PARADIS. J. Nondestructive Evaluation 2 (1981) 35.CrossRefGoogle Scholar
  13. 13.
    S. H. CARPENTER and F. P. HIGGINS, Metall. Trans. A. 8A (1989) 1629.Google Scholar
  14. 14.
    D. FANG, “Micro- and Macro-Evaluation of Fatigue Damage Accumulation”, DSc. dissertation, Technion — Israel Institute of Technology, Haifa, Israel (1993).Google Scholar
  15. 15.
    A. FANG and A. BERKOVITS, ASME J. Mater. Tech., in press.Google Scholar
  16. 16.
    D. FANG and A. BERKOVITS, J. Acoustic Emission 11(2), (1993) 85.Google Scholar
  17. 17.
    D. FANG and A. BERKOVITS, “Fatigue damage mechanisms on the basis of acoustic emission measurements”, in Symposium on Novel Experimental Techniques in Fracture Mechanics, ASME Winter Annual Meeting, New Orleans, USA, November (1993).Google Scholar
  18. 18.
    J. P. HIRTH and J. LOTHE, “Theory of dislocation” (McGraw-Hill Book Co., New York, 1968).Google Scholar
  19. 19.
    R. W. K. HONEYCOMBE, “The plastic deformation of metals” (St. Martin's Press, New York, 1986).Google Scholar
  20. 20.
    ASTM Standards, Annual Book of ASTM Standards, ASTM, Philadelphia, Vol.03.01 1992 p. 609.Google Scholar
  21. 21.
    M. A. HAMSTAD and A. K. MUKHERJEE, “The dependence of acoustic emission on strain rate in 7075-T6 aluminum”, Experimental Mechanics, January 1975 p. 33.Google Scholar
  22. 22.
    M. A. FRIESEL and S. H. CARPENTER, Mater. Sci. Eng. 68 (1984) 107.CrossRefGoogle Scholar
  23. 23.
    H. HATANO, J. Appl. Phys. 47 (1976) 3873.CrossRefGoogle Scholar
  24. 24.
    R. B. NICHOLSON, “Strengthening Methods in Crystals” (Applied Science Publishers, London, 1971).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Daining Fang
    • 1
  • Avraham Berkovits
    • 1
  1. 1.Faculty of Aerospace EngineeringTechnion-Israel Institute of TechnologHaifaIsrael

Personalised recommendations