Journal of Materials Science

, Volume 30, Issue 13, pp 3521–3526 | Cite as

Effect of Ag addition on crystallization in As2Se3 glasses

  • M. Kitao
  • C. Gotoh
  • S. Yamada


Differential scanning calorimetry (DSC) behaviours of glassy As2Se3 containing Ag up to 5 at % were measured at various heating rates. The effect of addition of Ag on crystallization of glassy As2Se3 was investigated. The glass transition temperature decreased with increasing Ag content. Crystallization kinetics were analysed on the basis of the two-step process model, where crystal growth takes place after nucleation. For non-doped As2Se3 two-dimensional growth of crystal was predominant, while for Ag-doped ones three-dimensional growth was very likely. It was supposed for all glassy Ag-doped samples that crystal nuclei exist, though micro-crystallites were not observed on X-ray diffraction traces. The activation energy for crystallization and the glass-forming tendency decreased by the addition of Ag.


Crystallization Activation Energy Differential Scanning Calorimetry Glass Transition Crystal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. ELLIOTT, “Glasses and amorphous materials”, Vol. 9 edited by J. ZARZYSKI (Materials Science and Technology, VCH, Weinheim, 1991) p. 375.Google Scholar
  2. 2.
    W. A. JOHNSON and K. F. MEHL, Trans. Am. Inst. Mining Met. Engn 135 (1939) 416.Google Scholar
  3. 3.
    M. AVRAMI, J. Chem. Phys. 7 (1939) 1103.CrossRefGoogle Scholar
  4. 4.
    S. SURINACH, M. D. BARO, M. T. CLAVAGUERAMORA and N. CLAVAGUERA, J. Non-Cryst. Solids 58 (1983) 209.CrossRefGoogle Scholar
  5. 5.
    R. A. LIGERO, J. VAZQUEZ, P. VILLARES and R. JIMENZ-GARAY, Mater. Lett. 8 (1989) 6.CrossRefGoogle Scholar
  6. 6.
    H. E. KISSINGER, Anal. Chem. 29 (1957) 1702.CrossRefGoogle Scholar
  7. 7.
    T. OZAWA, J. Thermal Anal. 2 (1970) 301.CrossRefGoogle Scholar
  8. 8.
    H. YINNON and D. P. UHLMANN, J. Non-Cryst. Solids 54 (1983) 253.CrossRefGoogle Scholar
  9. 9.
    K. MATUSITA, T. KOMATSU and R. YOKOTA, J. Mater. Sci. 19 (1984) 291.CrossRefGoogle Scholar
  10. 10.
    M. KITAO, N. ASAKURA and S. YAMADA, Jpn J. Appl. Phys. 8 (1969) 499.CrossRefGoogle Scholar
  11. 11.
    D. D. THORNBURG and R. I. JOHNSON, J. Non-Cryst. Solids 17 (1975) 2.CrossRefGoogle Scholar
  12. 12.
    D. W. HENDERSON and N. J. AST, ibid. 64 (1984) 43.CrossRefGoogle Scholar
  13. 13.
    P. PATEL and N. J. KREIDL, J. Amer. Ceram. Soc. 58 (1975) 263.CrossRefGoogle Scholar
  14. 14.
    M. K. KOTKATA, M. H. EL-FOULY and S. A. FAYEK, J. Mater. Sci. 25 (1990) 2917.CrossRefGoogle Scholar
  15. 15.
    M. KITAO, Jpn J. Appl. Phys. 11 (1972) 1472.CrossRefGoogle Scholar
  16. 16.
    Z. U. BORISOVA and T. S. RYKOVA, Sov. J. Phys. Chem. Glasses 3 (1977) 537.Google Scholar
  17. 17.
    A. HRUBY, Czech. J. Phys. B 22 (1972) 1187.CrossRefGoogle Scholar
  18. 18.
    K. MATUSITA and S. SAKKA, Phys. Chem. Glasses 20 (1979) 81.Google Scholar
  19. 19.
    S. MAHADEVAN, A. GIRIDHAR and A. K. SINGH, J. Non-Cryst. Solids 88 (1986) 11.CrossRefGoogle Scholar
  20. 20.
    I. WATANABE, Y. INAGAKI and T. SHIMIZU, ibid. 22 (1976) 109.CrossRefGoogle Scholar
  21. 21.
    Y. TAKANO, M. KITAO and S. YAMADA, Philos, Mag. B 55 (1987) 515.CrossRefGoogle Scholar
  22. 22.
    Yu. V. VOROSHILOV, M. I. GOLOVEI and M. V. POTORII, Sov. Phys. Crystallog. 21 (1976) 333.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Kitao
    • 1
  • C. Gotoh
    • 1
  • S. Yamada
    • 2
  1. 1.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan
  2. 2.Department of Electronic EngineeringShizuoka Institute of Science and TechnologyFukuroiJapan

Personalised recommendations