Advertisement

Journal of Materials Science

, Volume 30, Issue 13, pp 3515–3520 | Cite as

Influence of calcination temperature on the properties of spray dried alumina-zirconia composite powders

  • M. Balasubramanian
  • S. K. Malhotra
  • C. V. Gokularathnam
Article

Abstract

Alumina-zirconia composite powders containing 10, 12.5, 15 or 20 wt% zirconia were prepared by spray-drying the hydroxide gels. These powders were calcined at 650 and 950 °C. The spray-dried as well as the calcined powders were characterized by means of Coulter counter, Sorptometer, infrared spectroscopy (i.r.), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Initially the spray-dried powders are amorphous and spherical in shape with a diameter of 6 μm and crystallize after calcination treatment at 950 °C. Sintered density of the 950 °C calcined powder compacts was higher than 650 °C calcined powder compacts. Compacts made from 650 °C treated powders retained 100% tetragonal phase after sintering irrespective of composition. Some amount of tetragonal phase is transformed into monoclinic phase in the composites containing higher amount of zirconia in the sintered compacts made from 950 °C calcined powders.

Keywords

Polymer Scanning Electron Microscopy Zirconia Hydroxide Calcination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. EVANS and R. M. CANNON, Acta. Metall. 34 (1986) 761.CrossRefGoogle Scholar
  2. 2.
    M. RUHLE, N. CLAUSSEN and A. H. HEUER, J. Amer. Ceram. Soc. 69 (1986) 195.CrossRefGoogle Scholar
  3. 3.
    N. L. HECHT, S. M. GOODRICH, D. E. MCCULLUM, P. P. YANEY, S. D. JUNG and V. J. TENNERY, Amer. Ceram. Soc. Bull. 71 (1992) 955.Google Scholar
  4. 4.
    J. WANG and R. STEVENS, J. Mater. Sci. 24 (1989) 3421.CrossRefGoogle Scholar
  5. 5.
    F. F. LANGE, ibid. 17 (1982) 225.CrossRefGoogle Scholar
  6. 6.
    A. H. HEUER, N. CLAUSSEN, W. M. KRIVEN and M. RUHLE, J. Amer. Ceram. Soc. 65 (1982) 642.CrossRefGoogle Scholar
  7. 7.
    R. C. GARVIE, J. Phys. Chem. 69 (1965) 1238.CrossRefGoogle Scholar
  8. 8.
    Idem., ibid. 82 (1978) 218.CrossRefGoogle Scholar
  9. 9.
    J. P. BACH and F. THEVENOT, J. Mater. Sci. 24 (1989) 2711.CrossRefGoogle Scholar
  10. 10.
    S. DICK, C. SUHR, J. L. REHSPRINGER and M. DAIRE, Mater. Sci. Eng. A 109 (1989) 227.CrossRefGoogle Scholar
  11. 11.
    H. YOSHIMATSU, T. YABUKI and H. KAWASAKI, J. Non-Cryst. Solids 100 (1988) 413.CrossRefGoogle Scholar
  12. 12.
    W. D. BOND and P. F. BECHER, in “Ultrastructure processing of advanced ceramics”, edited by J. D. MACKENZIE and D. R. ULRICH (Wiley, New York, 1988) p. 443.Google Scholar
  13. 13.
    Y. MURASE, E. KATO and K. DAIMON, J. Amer. Ceram. Soc. 69 (1986) 83.CrossRefGoogle Scholar
  14. 14.
    C. S. HWANG and S. C. TSAUR, J. Mater., Sci. 27 (1992) 6791.CrossRefGoogle Scholar
  15. 15.
    F. F. LANGE, ibid. 17 (1982) 247.CrossRefGoogle Scholar
  16. 16.
    A. G. EVANS, N. BURLINGAME, M. DRORY and W. M. KRIVEN, Acta. Metall. 29 (1981) 447.CrossRefGoogle Scholar
  17. 17.
    L. MONTANARO and A. NEGRO, J. Mater. Sci. 26 (1991) 4511.CrossRefGoogle Scholar
  18. 18.
    R. C. GARVIE and P. S. NICHOLSON, J. Amer. Ceram. Soc. 55 (1972) 303.CrossRefGoogle Scholar
  19. 19.
    T. SATO, S. IKOMA and F. OZAWA, in “Thermal analysis” edited by B. MILLER (John Wiley & Sons, Chichester, 1982) p. 578.Google Scholar
  20. 20.
    V. SARASWATI, G. V. N. RAO and G. V. RAMA RAO, J. Mater. Sci. 22 (1987) 2529.CrossRefGoogle Scholar
  21. 21.
    H. A. SZYMANSKI, in “Infrared band handbook” (Plenum Press, New York, 1963) p. 198, 207.Google Scholar
  22. 22.
    J. PERI, J. Phys. Chem. 69 (1965) 211.CrossRefGoogle Scholar
  23. 23.
    B. G. LINSEN, in “Physical and chemical aspects of adsorbents and catalysts” (Academic Press, London, 1970) p. 195.Google Scholar
  24. 24.
    R. CYPRES, R. WOLLAST and J. RAUEQ, Ber. Deut. Keram. Ges. 40 (1963) 527.Google Scholar
  25. 25.
    P. VINCENZINI, in “Fundamentals of ceramic engineering” (Elsevier Applied Science, London, 1991) p. 133.CrossRefGoogle Scholar
  26. 26.
    J. E. BURKE, J. Amer. Ceram. Soc. 40 (1957) 80.CrossRefGoogle Scholar
  27. 27.
    P. F. BECHER, Acta Metall. 34 (1986) 1885.CrossRefGoogle Scholar
  28. 28.
    F. F. LANGE, J. Amer. Ceram. Soc. 67 (1984) 83.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Balasubramanian
    • 1
  • S. K. Malhotra
    • 1
    • 2
  • C. V. Gokularathnam
    • 1
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyMadrasIndia
  2. 2.FRP Research CentreIndian Institute of TechnologyMadrasIndia

Personalised recommendations