Journal of Materials Science

, Volume 30, Issue 13, pp 3457–3462 | Cite as

Experimental studies and space charge mechanism for the conductivity/mobility enhancement due to SnO2 dispersion in Ag+ ion conducting borate glass

  • K. M. Shaju
  • S. Chandra


The enhancement in ionic conductivity of a Ag+ ion conducting borate glass of molar % composition 55.5 Agl-22.25 Ag20-22.25 B2O3 is reported with the dispersion of SnO2. X-ray diffraction (XRD), i.r. and optical microscopy reveals that the SnO2 addition yields a dispersed phase material and not a new glass. The material is essentially a Ag+ ion conducting (Agl+Ag2O+B2O3) glass in which SnO2 is dispersed. The direct measurement of mobility of the mobile ions reveals that the enhancement in conductivity is controlled by the enhancement in mobility. A space charge model based on the mechanism of adsorption-desorption of mobile ions near/at the interface in the space charge region creating a certain type of mobile ion concentration gradient is introduced to explain the results.


Optical Microscopy SnO2 Disperse Phase Space Charge B2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. ANGELL, Solid State Ionics 18–19 (1986) 72.CrossRefGoogle Scholar
  2. 2.
    M. D. INGRAM, Phil. Mag. B. 60 (1989) 729.CrossRefGoogle Scholar
  3. 3.
    S. W. MARTIN, J. Amer. Ceram. Soc. 74 (1991) 1767.CrossRefGoogle Scholar
  4. 4.
    T. MINAMI, J. Non-Cryst. Solids 73 (1985) 273.CrossRefGoogle Scholar
  5. 5.
    H. L. TULLER, D. P. BUTTON and D. R. UHLMANN, ibid. 40 (1980) 93.CrossRefGoogle Scholar
  6. 6.
    G. CHIODELLI, A. MAGISTRIS and A. SHIRALDI, Electrochim. Acta 23 (1978) 585.CrossRefGoogle Scholar
  7. 7.
    A. KUMAR, K. M. SHAJU and S. CHANDRA, in “Solid state ionics: materials and applications, edited by B. V. R. CHOWDARI, S. CHANDRA, S. SINGH and P. C. SRIVASTAVA (World Scientific, Singapore, 1992).Google Scholar
  8. 8.
    T. MINAMI, T. SHIMIZU and M. TANAKA, Solid State Ionics 9/10 (1983) 577.CrossRefGoogle Scholar
  9. 9.
    K. S. SIDHU, S. SINGH, S. S. SEKHON, S. CHANDRA and A. KUMAR, Phys. Chem. Glasses 32 (1991) 255.Google Scholar
  10. 10.
    N. J. DUDNEY, Solid State Ionics 28–30 (1988) 1065.CrossRefGoogle Scholar
  11. 11.
    C. C. LIANG, J. Electrochem. Soc. 120 (1973) 1289.CrossRefGoogle Scholar
  12. 12.
    J. MAIER, Ber. Bunsenges. Phys. Chem. 88 (1984) 1057.CrossRefGoogle Scholar
  13. 13.
    Idem., Mat. Res. Bull. 20 (1985) 383.CrossRefGoogle Scholar
  14. 14.
    Idem., J. Phys. Chem. Solids 46 (1985) 309.CrossRefGoogle Scholar
  15. 15.
    J. B. WAGNER Jr, Mat. Res. Bull. 15 (1980) 1691.CrossRefGoogle Scholar
  16. 16.
    T. JOW and J. B. WAGNER Jr, J. Electrochem. Soc. 126 (1979) 1963.CrossRefGoogle Scholar
  17. 17.
    K. SHAHI and J. B. WAGNER Jr, J. Solid. State Chem. 42 (1982) 107.CrossRefGoogle Scholar
  18. 18.
    T. KIMURA, S. INADA and T. YAMAGUCHI, J. Mater. Sci. 24 (1989) 220.CrossRefGoogle Scholar
  19. 19.
    J. B. WAGNER Jr and C. WAGNER, J. Chem. Phys. 26 (1957) 1597.CrossRefGoogle Scholar
  20. 20.
    S. CHANDRA, “Superionic solids — principles and applications” (North Holland, Amsterdam, 1981).Google Scholar
  21. 21.
    S. CHANDRA, S. K. TOLPADI and S. A. HASHMI, Solid State Ionics 28–30 (1988) 651.CrossRefGoogle Scholar
  22. 22.
    M. C. R. SHASTRY and K. J. RAO, Solid State Ionics 51 (1992) 311.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • K. M. Shaju
    • 1
  • S. Chandra
    • 1
  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations