Advertisement

Journal of Materials Science

, Volume 30, Issue 13, pp 3449–3456 | Cite as

The influence of cathodic hydrogen charging on the mechanical behaviour of Al-4Zn-1Mg alloy

  • C. Panagopoulos
  • P. Papapanayiotou
Article

Abstract

The effect of cathodic charging on the mechanical behaviour of Al-4Zn-1Mg alloy was studied. Hardening of the Al-4Zn-1Mg alloy surface, due to the hydrogen absorption, was observed. The ultimate tensile stress of the charged aluminium alloy was noted to be a non-linear function of the charging current density. The cathodically charged aluminium alloy exhibited brittle transgranular fracture at the surface layer, whereas ductile intergranular fracture was observed at the deeper layers of the same alloy.

Keywords

Hydrogen Polymer Surface Layer Brittle Aluminium Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. O. SHIM and J. G. BYRNE, Mater. Sci. Eng. 74 (1985) 174.Google Scholar
  2. 2.
    V. KERLINS, “Metals Handbook, Vol. 12, Fractography”, 9th edition (ASM, Metals Park, OH, 1987) p. 13.Google Scholar
  3. 3.
    G. M. BOND, I. M. ROBERTSON and H. K. BIRNBAUM, Acta Metall. 36 (1988) 2193.CrossRefGoogle Scholar
  4. 4.
    J. W. WATSON, Y. Z. SHEN and M. MESHII, Met. Trans. 19A (1988) 2299.CrossRefGoogle Scholar
  5. 5.
    L. CHRISTODOULOU and H. M. FLOWER, Acta. Metall. 28 (1980) 481.CrossRefGoogle Scholar
  6. 6.
    S. P. LYNCH, Corrosion Sci. 22 (1982) 925.CrossRefGoogle Scholar
  7. 7.
    S. NAKAHARA and Y. OKINAKA, J. Electrochem. Soc. 136 (1989) 1892.CrossRefGoogle Scholar
  8. 8.
    A. KIMURA and H. K. BIRNBAUM, Acta Metall. 35 (1987) 1077.CrossRefGoogle Scholar
  9. 9.
    L. CHEN, W. CHEN, Z. LIU, Y. SHAO and Z. HU, Met. Trans. 24A (1993) 1355.CrossRefGoogle Scholar
  10. 10.
    R. M. LATANISION and M. KURKELA, Corrosion 39 (1983) 174.CrossRefGoogle Scholar
  11. 11.
    J. ALBRECHT, A. W. THOMPSON and I. M. BERNSTEIN, Met. Trans. 10A (1979) 1759.CrossRefGoogle Scholar
  12. 12.
    Y. IIJIMA, S. I. YOSHIDA, H. SAITOH, H. TANAKA and K. I. HIRANO, J. Mater. Sci. 27 (1992) 5735.CrossRefGoogle Scholar
  13. 13.
    R. K. VISWANADHAM, T. S. SUN and J. A. S. GREEN, Met. Trans. 11A (1980) 85.CrossRefGoogle Scholar
  14. 14.
    J. YAO, S. A. MEGUID and J. R. CAHOON, ibid. 24 A (1993) 105.CrossRefGoogle Scholar
  15. 15.
    F. ZEIDES and I. ROMAN, Mater. Sci. Eng. A125 (1990) 21.CrossRefGoogle Scholar
  16. 16.
    D. KWON, S. LEE and R. J. ASARO, Met. Trans. 23A (1991) 1375.Google Scholar
  17. 17.
    H. P. van LEEUWEN, Corrosion 29 (1973) 197.CrossRefGoogle Scholar
  18. 18.
    S. P. LYNCH, Acta Metall. 29 (1981) 325.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. Panagopoulos
    • 1
  • P. Papapanayiotou
    • 1
  1. 1.Laboratory of Physical MetallurgyNational Technical University of AthensAthensGreece

Personalised recommendations