Advertisement

Journal of Materials Science

, Volume 30, Issue 13, pp 3440–3448 | Cite as

Development, preliminary testing and future applications of a rational correlation for the grain densities of vapour-deposited materials

  • T. Kho
  • J. Collins
  • D. E. Rosner
Article
  • 26 Downloads

Abstract

It is conjectured and found in this work that the grain densities (suitably normalized) of vapour-deposited solid materials depend principally on competition between the successful arrival rate of their reagent molecules and the surface diffusion rate of admolecules on their growing surfaces. The ratio of these two rates defines an important dimensionless Damköhler number, called here the “burial” parameter, β. Available grain density data for seven vapour deposited materials [silicon (Si), gallium arsenide (GaAs), silicon carbide (SiC), silicon nitride (Si3N4), titanium oxide (TiO2), boron nitride (BN) and graphite (C)] are used to establish and test the “universality” of the proposed normalized grain density versus burial parameter correlation. As anticipated, these data show that the normalized grain densities of these materials increase with their corresponding burial parameters. Moreover, for estimated burial parameters much less than unity, the deposits formed are indeed reported to be amorphous, while the deposits are observed to be crystalline under conditions for which β ≫ 1 is estimated. As the burial parameter decreases, the reported grain densities of turbostratic, “layered”, materials are found to decrease more gradually than for materials with no turbostratic structure. While the present implementation of this basic hypothesis cannot be regarded as “complete”, it is argued that a rationally-based, reasonably “universal” vapour deposit density correlation of this general form can be quite useful in making rational predictions of deposit quality. Moreover, it appears that this path to such mechanistically plausible correlations, which, using available experimental data, can be implemented/tested even in the absence of a “complete” theory, can be broadened to include other important deposit characteristics via the introduced of additional characteristic time ratios.

Keywords

TiO2 GaAs Burial Boron Nitride Silicon Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. ROSNER, “Transport Processes in Chemically Reacting Flow Systems” (Butterworth-Heinemann, Stoneham, MA, 1986).Google Scholar
  2. 2.
    S. A. GÖKOĞLU, in “Proceedings of the 11th International Symposium on Chemical Vapor Deposition”, Vol. 90–112, edited by K. E. SPEAR and G. W. CULLEN (The Electrochemical Society, Pennington, NJ, 1990) p. 1.Google Scholar
  3. 3.
    C. HILL and S. JONES, in “Properties of Silicon”, EMIS Data Reviews Series No. 4 (INSPEC, The Institution of Electrical Engineers, London, 1988) p. 935.Google Scholar
  4. 4.
    P. M. DRYBURGH, J. Cryst. Growth 87 (1988) 397.CrossRefGoogle Scholar
  5. 5.
    W. A. TILLER, “The Science of Crystallization: Microscopic Interfacial Phenomena” (Cambridge University Press, 1991) p. 173.Google Scholar
  6. 6.
    D. E. ROSNER, J. COLLINS and J. L. CASTILLO, in “Proceedings of the 12th International Symposium on Chemical Vapor Deposition”, Vol. 93-2, edited by K. F. JENSEN and G. W. CULLEN (The Electrochemical Society, Pennington, NJ, 1993) p. 41.Google Scholar
  7. 7.
    N. B. COLTHUP, in “Encyclopedia of Physical Science & Technology”, Vol. 8, 2nd Edn, edited by R. A. Meyers (Academic Press) p. 106.Google Scholar
  8. 8.
    R. C. LORD, in “McGraw-Hill Encyclopedia of Science & Technology”, Vol. 9, 6th Edn (McGraw-Hill) p. 162.Google Scholar
  9. 9.
    R. C. HENDERSON and R. F. HELM, Surface Sci. 30 (1972) 310.CrossRefGoogle Scholar
  10. 10.
    R. W. G. WYCKOFF, “Crystal Structures” Vol. 1, 2nd Edn (Wiley, New York, 1963) p. 184.Google Scholar
  11. 11.
    Y. TATSUMI and H. OHSAKI, in “Properties of Silicon”, EMIS Data Reviews Series No. 4 (INSPEC, Institution of Electrical Engineers, London, 1988) p. 3.Google Scholar
  12. 12.
    “Semiconductors: Group IV Elements and III–V Compounds, Data in Science and Technology”, edited by O. Madelung (Springer-Verlag, Berlin, 1991).Google Scholar
  13. 13.
    J. A. van VECHTEN, in “Properties of Silicon”, EMIS Data Reviews Series No. 4 (INSPEC, Institution of Electrical Engineers, London, 1988) p. 47.Google Scholar
  14. 14.
    G. B. STRINGFELLOW, “Organometallic Vapor-Phase Epitaxy: Theory and Practice” (Academic Press, 1989) p. 59.Google Scholar
  15. 15.
    T. NISHINAGA and K. I. CHO, Jpn. J. Appl. Phys. 130 (1988) 675.Google Scholar
  16. 16.
    F. S. GALASSO, “Chemical Vapor Deposited Materials” (CRC Press, 1991).Google Scholar
  17. 17.
    M. A. Ei KHAKANI, M. CHAKER, A. JEAN, S. BOILY, J. C. KIEFFER, M. E. O'HERN, M. F. RAVET and R. ROUSSEAUX, J. Mater. Res. 9 (1994) 96.CrossRefGoogle Scholar
  18. 18.
    K. NIIHARA and T. HIRAI, J. Mater. Sci. 11 (1976) 604.CrossRefGoogle Scholar
  19. 19.
    P. L. LAUNER, “Silicon Compounds Register and Review, Petrarch Systems Silanes and Silicones” (Petrarch Systems, 1987).Google Scholar
  20. 20.
    T. HIRAI and T. GOTO, J. Mater. Sci. 16 (1981) 2877.CrossRefGoogle Scholar
  21. 21.
    D. G. HOWITT and A. B. HARKER, J. Mater. Res. 2 (1987) 201.CrossRefGoogle Scholar
  22. 22.
    R. H. PERRY and D. GREEN, “Perry's Chemical Engineers' Handbook”, 6th Edn (McGraw-Hill, Singapore, 1984) pp. 3–23.Google Scholar
  23. 23.
    F. KIRKBIR and H. KOMIYAMA, Can. J. Chem. Engng 65 (1987) 759.CrossRefGoogle Scholar
  24. 24.
    C. D. CRAVER (Ed.), “The Coblentz Society Desk Book of Infrared Spectra” (The Coblentz Society, 1977).Google Scholar
  25. 25.
    K. KAMATA, K. MARUYAMA, S. AMANO and H. FUKAZAWA, J. Mater. Sci. Lett. 9 (1990) 316.CrossRefGoogle Scholar
  26. 26.
    R. T. PAINE and C. K. NARULA, Chem. Rev. 90 (1990) 73.CrossRefGoogle Scholar
  27. 27.
    W. L. LEE, W. J. LACKEY and P. K. AGRAWA, J. Amer. Ceram. Soc. 74 (1991) 2642.CrossRefGoogle Scholar
  28. 28.
    T. MATSUDA, N. UNO and H. NAKAE, J. Mater. Sci. 21 (1986) 649.CrossRefGoogle Scholar
  29. 29.
    KIRK-OTHMER, “Encyclopedia of Chemical Technology” 3rd Edn (Wiley, New York).Google Scholar
  30. 30.
    K. SPEAR, Earth Mineral Sci. 56 (1987).Google Scholar
  31. 31.
    U. KÜRPICK, G. MEISTER and A. GOLDMANN, Appl. Phys. A55 (1992) 529.CrossRefGoogle Scholar
  32. 32.
    R. F. C. FARROW, J. Electrochem. Soc. Solid-State Sci. Technol. 121 (1974) 899.Google Scholar
  33. 33.
    J. BLOEM, J. Cryst. Growth 18 (1973) 70.CrossRefGoogle Scholar
  34. 34.
    Y. TATSUMI, H. OHSAKI, Y. KURAHASHI, M. IIJIMA, K. KURUMI, K. MIURA and T. INO, Jpn. J. Appl. Phys. 25 (1986) 1152.CrossRefGoogle Scholar
  35. 35.
    D. H. REED and S. K. GHANDHI, J. Electrochem. Soc. Solid-State Sci. & Technol. 130 (1983) 675.Google Scholar
  36. 36.
    D. W. SHAW, J. Electrochem. Soc. 115 (1968) 405.CrossRefGoogle Scholar
  37. 37.
    S. NISHINO, K. TAKAHASHI, H. ISHIDA and J. SARAIE, in “Amorphous and Crystalline Silicon Carbide III”, Vol. 56 (SPP, 1992) p. 295.Google Scholar
  38. 38.
    K. TAKAHASHI, S. NISHINO, J. SARAIE and K. HARADA, in “Amorphous and Crystalline Silicon Carbide IV”, Vol. 71 (SPP, 1991) p. 78.Google Scholar
  39. 39.
    K. NIIHARA and T. HIRAI, J. Mater. Sci. 12 (1977) 1233.CrossRefGoogle Scholar
  40. 40.
    J. COLLINS, PhD Thesis, Yale University (1994).Google Scholar
  41. 41.
    T. MATSUDA, H. NAKAE and T. HIRAI, J. Mater. Sci. 23 (1988) 509.CrossRefGoogle Scholar
  42. 42.
    T. HIRAI and S. YAJIMA, ibid. 2 (1967) 18.CrossRefGoogle Scholar
  43. 43.
    S. YAJIMA, T. SATOW and T. HIRAI, J. Nuclear Mater. 17 (1965) 116.CrossRefGoogle Scholar
  44. 44.
    Idem, ibid. 17 (1965) 127.CrossRefGoogle Scholar
  45. 45.
    D. F. DIEFENDORF, J. Chimica Physica (Paris) 57 (1960) 815.Google Scholar
  46. 46.
    T. M. BESSMAN, B. W. SHELDON, R. A. LOWDEN and D. P. STINTON, Science 253 (1991) 1104.CrossRefGoogle Scholar
  47. 47.
    Y. TAKAHASHI, H. SUZUKI and M. NASU, J. Chem. Soc., Faraday Trans. 1, 81 (1985) 3117.CrossRefGoogle Scholar
  48. 48.
    J. HARVEY, D. CLARK and J. N. EASTBROOK, in “Special Ceramics”, edited by P. POPPER (Academic Press, New York, 1963) p. 183.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • T. Kho
    • 1
  • J. Collins
    • 1
  • D. E. Rosner
    • 1
  1. 1.Department of Chemical Engineering, High Temperature Chemical Reaction Engineering (HTCRE) LaboratoryYale UniversityNew HavenUSA

Personalised recommendations