Advertisement

Journal of Materials Science

, Volume 30, Issue 13, pp 3435–3439 | Cite as

WC-(Fe,Ni,C) hardmetals with improved toughness through isothermal heat treatments

  • R. González
  • J. Echeberría
  • J. M. Sánchez
  • F. Castro
Article

Abstract

The influence of carbon additions on densification during liquid phase sintering of WC-(Fe,Ni,C) hardmetals, and of subsequent heat treatments on some mechanical properties, like hardness and fracture toughness, have been investigated. The relation between total carbon content in the mixtures and final density of the specimens has been determined, together with its effect on the structure of the resulting metallic binder phase. In addition, the relationship between hardness and toughness and WC grain size in these hardmetals has shown to be similar to that in the traditional WC-Co system. Nevertheless, the effect of isothermal heat treatments which bring about a modification of the microstructure of the metallic binder has proved to be beneficial for increasing toughness without an appreciable influence on hardness.

Keywords

Polymer Grain Size Microstructure Heat Treatment Liquid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. SARIN, Adv. Powder Technol. (GTE Laboratories Inc., 1977) p. 253.Google Scholar
  2. 2.
    B. ARONSSON, Powder Metall. 30–3 (1987) 175.CrossRefGoogle Scholar
  3. 3.
    D. MOSKOWITZ, Mod. Dev. Powder Metall. 10 (1977) 543.Google Scholar
  4. 4.
    R. K. VISWANADHAM and P. G. LINDQUIST, Metall Trans. 18A (1987) 2163.CrossRefGoogle Scholar
  5. 5.
    Idem., ibid. 18A (1987) 2175.CrossRefGoogle Scholar
  6. 6.
    T. FAROOQ and T. J. DAVIES, Int. J. Powder Metall. 27–4 (1991) 347.Google Scholar
  7. 7.
    A. P. MIODOWNIK, Powder Metall. 32–4 (1989) 269.CrossRefGoogle Scholar
  8. 8.
    B. UHRENIUS, ibid. 35–3 (1992) 203.CrossRefGoogle Scholar
  9. 9.
    T. KAKESHITA and C. M. WAYMAN, Mat. Sci. Eng. A141 (1991) 209.CrossRefGoogle Scholar
  10. 10.
    K. S. RAVICHANDRAN, Acta Metall. Mater. 42–1 (1994) 143.CrossRefGoogle Scholar
  11. 11.
    P. A. MATAGA, Acta Metall. 37–12 (1989) 3349.CrossRefGoogle Scholar
  12. 12.
    G. BAO and F. ZOK, Acta Metall. Mater. 41–12 (1993) 3515.CrossRefGoogle Scholar
  13. 13.
    H. JONSSON, Powder Metall. 15 (1972) 1.CrossRefGoogle Scholar
  14. 14.
    R. SPIEGLER, S. SCHMAUDER and L. S. SIGL, J. Hard Mat. 1–3 (1990) 147.Google Scholar
  15. 15.
    R. WARREN and B. JOHANNESSON, Powder Metall. 27–1 (1984) 25.CrossRefGoogle Scholar
  16. 16.
    R. GODSE, J. GURLAND and S. SURESH, Mat. Sci. Eng. A105/106 (1988) 383.CrossRefGoogle Scholar
  17. 17.
    H. C. LEE and J. GURLAND, ibid. 33 (1978) 125.CrossRefGoogle Scholar
  18. 18.
    A. D. ROMIG, Jr and J. I. GOLDSTEIN, Metall. Trans. 9A (1978) 1599.CrossRefGoogle Scholar
  19. 19.
    Idem., ibid. 11A (1980) 1151.CrossRefGoogle Scholar
  20. 20.
    J. HONG and J. GURLAND, in “Science of hard materials”, edited by R. K. VISWANADHAM, D. J. ROWCLIFFE and J. GURLAND (Plenum Press, New York, 1983) p. 649.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. González
    • 1
  • J. Echeberría
    • 1
  • J. M. Sánchez
    • 1
  • F. Castro
    • 1
  1. 1.Centro de Estudios e Investigaciones Técnicas de Guipúzcoa (CEIT)San SebastiánSpain

Personalised recommendations