Journal of Materials Science

, Volume 30, Issue 13, pp 3415–3420 | Cite as

Photoelectrochemical behaviour of SnO2 thin-film electrodes prepared by ultrasonic spray pyrolysis

  • Ki Hyun Yoon
  • Dong Jin Nam


Photoelectrochemical behaviour of the SnO2 thin film prepared by ultrasonic spray pyrolysis was studied as a function of deposition time, annealing time and phosphorus content. The photocurrent increased up to 10 min (1.16 μm) with deposition time and then decreased. When the SnO2 thin film was annealed for 10 min at 400°C in air, the maximum value of photocurrent was obtained. When phosphorus was added to the SnO2, photocurrent was decreased continuously with increasing phosphorus content.


Polymer Thin Film Phosphorus Pyrolysis SnO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. FUJISHIMA and K. HONDA, Nature 238 (7) (1972) 37.CrossRefGoogle Scholar
  2. 2.
    M. S. WRIGHTON, A. B. ELLIS, P. T. WOLCZANSKI, D. L. MORSE, H. B. ABRAHAMSON and D. S. GIMLEY, J. Am. Chem. Soc. 98 (1976) 2774.CrossRefGoogle Scholar
  3. 3.
    H. H. KUNG, H. S. JARRETT, A. W. SLEIGHT and A. FERRETTI, J. Appl. Phys. 48 (1977) 2463.CrossRefGoogle Scholar
  4. 4.
    H. IIDA, T. MISHUKU, A. ITO, M. YAMANAKA and Y. HAYASHI, Solar Energy Mater. 17 (1988) 107.CrossRefGoogle Scholar
  5. 5.
    T. H. UEN, K. F. HUANG, M. S. CHEN and Y. S. GOU, Thin Solid Films 158 (1988) 69.CrossRefGoogle Scholar
  6. 6.
    T. H. KIM and K. H. YOON, J. Appl Phys. 70 (1991) 2739.CrossRefGoogle Scholar
  7. 7.
    H. KANEKO, ibid. 48 (1977) 1914.CrossRefGoogle Scholar
  8. 8.
    S. M. SZE, “Physics of semiconductor devices” (Wiley, New York, 1981) p. 31.Google Scholar
  9. 9.
    K. H. YOON and C. H. KWON, J. Appl. Phys. 67 (1990) 868.CrossRefGoogle Scholar
  10. 10.
    W. W. PUNN, Y. AIKAWA and A. J. BARD, J. Electrochem. Soc. 728 (1981) 222.Google Scholar
  11. 11.
    J. S. MAUDES and T. RODRIGUEZ, Thin Solid Films 69 (1980) 183.CrossRefGoogle Scholar
  12. 12.
    H. HAITJEMA. J. Ph. ELICH and C. J. HOOGENDOORN, Solar Energy Mater. 18 (1989) 283.CrossRefGoogle Scholar
  13. 13.
    H. DEMIRYONT and K. E. NIETERING, Solar Energy Mater. 19 (1989) 79.CrossRefGoogle Scholar
  14. 14.
    I. HAMBOULEYRON, C. CONSTANTINO and M. FANTINI, ibid. 9 (1983) 127.CrossRefGoogle Scholar
  15. 15.
    Colin A. VINCENT, J. Electrochem. Soc. 119 (1972) 515.CrossRefGoogle Scholar
  16. 16.
    C. AGASHE, M. G. TAKWALE, B. R. MARATHE and V. G. BHIDE, J. Mater. Sci. 24 (1989) 2628.CrossRefGoogle Scholar
  17. 17.
    T. YOKO, K. KAMIYA and S. SAKKA, Yogyo-Kyokai-Shi 95 (1987) 150.CrossRefGoogle Scholar
  18. 18.
    J. P. PADHYAY, S. R. VISHWAKARMA and H. C. PRASAD, Thin Solid Films 169 (1989) 195.CrossRefGoogle Scholar
  19. 19.
    Wendell SPENCE, J. Appl. Phys. 38 (1967) 367.CrossRefGoogle Scholar
  20. 20.
    K. B. SUNDARAM and G. K. BHAGAVAT, J. Phys. D Appl. Phys. 14 (1981) 533.Google Scholar
  21. 21.
    E. SHANTHI, V. DUTTA, A. BANERJEE and K. L. CHOPRA, J. Appl. Phys. 51 (1980) 6243.CrossRefGoogle Scholar
  22. 22.
    M. A. BUTLER, ibid 48 (1977) 1912.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Ki Hyun Yoon
    • 1
  • Dong Jin Nam
    • 1
  1. 1.Department of Ceramic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations