Advertisement

Journal of Materials Science

, Volume 30, Issue 13, pp 3401–3406 | Cite as

Electrical resistivity of Si-Ti-C-O fibres after rapid heat treatment

  • M. Narisawa
  • Y. Itoi
  • K. Okamura
Article

Abstract

Two types of Si-Ti-C-O fibres were heat treated in a preheated graphite furnace at temperatures between 1273 and 1973 K, and the change in the electrical resistivity was measured after removing the fibres from the furnace. The resistivity of the fibres decreased monotonically with increasing heat-treatment temperature, but showed a significant increase of the order of 101–102 in the temperature range of gas evolution from the fibres. The resistivity of the fibre which has an amorphous character began to increase at a lower temperature than that of the fibre with a crystalline character. This increase in resistivity did not occur during heat treatment in a pure oxygen atmosphere, because the oxide layer formed on the fibre surface suppressed gas evolution from the fibres. The X-ray diffraction patterns of heat-treated fibres in nitrogen or oxygen atmospheres revealed that β-SiC crystals began to precipitate from the amorphous state as the heat-treatment temperature increased. The β-SiC crystal growth, however, did not always correspond with the decrease in the fibre resistivity.

Keywords

Oxide Layer Electrical Resistivity Fibre Surface Amorphous State Oxygen Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. YAJIMA, K. OKAMURA, T. MATSUZAWA, Y. HASEGAWA and T. SHISHIDO, Nature 279 (1979) 706.CrossRefGoogle Scholar
  2. 2.
    S. YAJIMA, Ceram. Bull. 62 (1983) 893.Google Scholar
  3. 3.
    J. F. VILLENEUVE, D. MOCAER, R. PAILLER and R. NASLAIN, J. Mater. Sci. 28 (1993) 1227.CrossRefGoogle Scholar
  4. 4.
    M. MONTHIOUX, A. OBERLIN and E. BOUILLON, Compos. Sci. Technol. 37 (1990) 21.CrossRefGoogle Scholar
  5. 5.
    E. BOUILLON, F. LANGLAIS, R. PAILLER, R. NASLAIN, F. CRUEGE, P. V. HUONG, J. C. SARTHOU, A. DELPUECH, C. LAFFON, P. LAGARDE, M. MONTHIOUX and A. OBERLIN, J. Mater. Sci. 26 (1991) 1333.CrossRefGoogle Scholar
  6. 6.
    N. MUTO, M. MIYAYAMA, H. YANAGIDA, T. KAJIWARA, N. MORI, H. ICHIKAWA and H. HARADA, J. Am. Ceram. Soc. 73 (1990) 443.CrossRefGoogle Scholar
  7. 7.
    C. J. CHU, S. J. TING and J. D. MACKENZIE, in “Springer Proceedings in Physics 56 (Amorphous and Crystalline Silicon Carbide III), edited by G. L. Harris, M. G. Spencer and C. Y. Yang (Springer, 1992) p. 93.Google Scholar
  8. 8.
    T. YAMAMURA, T. ISHIKAWA, M. SHIBUYA, T. HISAYUKI and K. OKAMURA, J. Mater. Sci. 23 (1988) 2589.CrossRefGoogle Scholar
  9. 9.
    K. KAKIMOTO, T. SHIMOO, K. OKAMURA, T. SEGUCHI, M. SATO, K. KUMAGAWA and T. YAMAMURA, J. Jpn Inst. Metals 58 (1994) 229.CrossRefGoogle Scholar
  10. 10.
    T. SHIMOO, M. SUGIMOTO, Y. KAKEHI and K. OKAMURA, ibid. 55 (1991) 294.CrossRefGoogle Scholar
  11. 11.
    Y. HASEGAWA and K. OKAMURA, J. Mater. Sci. 18 (1983) 3633.CrossRefGoogle Scholar
  12. 12.
    C. VALHAS, C. BOURGETTE, P. LE COUSTUMER and M. MONTHIOUX, in “Proceedings of the 6th European Conference on Composite Materials (High Temperature Ceramic Matrix Composites, HT-CMCI)”, Bordeaux, September 1993, edited by R. Naslain, J. Lamon and D. Doumeingts (Woodhead, 1993) p. 67.Google Scholar
  13. 13.
    Y. SASAKI, Y. NISHINA, M. SATO and K. OKAMURA, J. Mater. Sci. 22 (1987) 443.CrossRefGoogle Scholar
  14. 14.
    K. KAKIMOTO, T. SHIMOO and K. OKAMURA, J. Am. Ceram. Soc., submitted.Google Scholar
  15. 15.
    Idem, J. Jpn Inst. Metals 57 (1993) 957.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Narisawa
    • 1
  • Y. Itoi
    • 1
  • K. Okamura
    • 1
  1. 1.College of EngineeringUniversity of Osaka PrefectureOsakaJapan

Personalised recommendations