Advertisement

Journal of Materials Science

, Volume 30, Issue 13, pp 3376–3382 | Cite as

Forming processes of strontium barium niobate ceramics

  • Tsang-Tse Fang
  • Nan-Ti Wu
Article

Abstract

In forming strontium barium niobate (SBN) ceramics, two methods (pressure filtration and slip casting) were employed to investigate the consolidation behaviour. The zeta potentials were measured to understand the interparticle forces of SBN powders. It was found that the zeta potentials of SBN powders were negative above pH 2.2. Several experiments have been conducted to investigate the effect of pH on the rheological behaviour of SBN slurries with 20 vol% solids loading. The rheological behaviour of the slurries SBN with 20 vol% solids loading at pH 11.5 is shear thinning. It is suggested that the increase of the flow rate of the fluid might have the advantages to enhance the packing density and prevent fine particles from clogging in pressure filtration and slip casting. Two different moulds i.e. plaster and alumina have been used to investigate the effect of pore morphology of the moulds on the cake microstructures. A uniform microstructure of cast cake was formed for using an alumina mould and significant contamination was observed in using a plaster mould.

Keywords

Microstructure Strontium Zeta Potential Fine Particle Packing Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. B. JAMIESON, S. C. ABRAHAMS and J. L. BERNSTEIN, J. Chem. Phys. 48 (1968) 5048.CrossRefGoogle Scholar
  2. 2.
    E. L. VENTURINI, E. G. SPENCER, P.V. LENZO and A. A. BALLMAN J. Appl. Phys. 39 (1968) 343.CrossRefGoogle Scholar
  3. 3.
    A. M. GLASS, ibid. 40 (1969) 4699.CrossRefGoogle Scholar
  4. 4.
    P. V. LENZO, E. G. SPENCER and A. A. BALLMAN, Appl. Phys. Lett. 11 (1967) 23.CrossRefGoogle Scholar
  5. 5.
    S. DUCHARME, J. FEINBERG and R. R. NEURGAONKAR, IEEE, J. Quantum Electronics. QE-23 (1987) 2116.CrossRefGoogle Scholar
  6. 6.
    R. B. MACIOLEK and S. T. LIU, J. Electron, Mater. 2 (1973) 191.CrossRefGoogle Scholar
  7. 7.
    R. R. NEURGAONKAR, M. H. KALISHER, T. C. LIM, E. J. STAPLES and K. L. KEESTER, Mater. Res. Bull. 15 (1980) 1235.CrossRefGoogle Scholar
  8. 8.
    J. B. THAXTER, Appl. Phys. Lett. 15 (1969) 210.CrossRefGoogle Scholar
  9. 9.
    R. R. NEURGAONKAR and W. K. CORY, J. Opt. Soc. Am. B: Opt Phys. 3 (1986) 274.CrossRefGoogle Scholar
  10. 10.
    R. R. NEURGAONKAR and L. E. CROSS, Mater. Res. Bull. 21 (1986) 893.CrossRefGoogle Scholar
  11. 11.
    M. H. FRANCOMBE, Acta Crystallogr. 13 (1960) 131CrossRefGoogle Scholar
  12. 12.
    I. G. ISMALZADE, Kristallografiya 5 (1960) 268.Google Scholar
  13. 13.
    A. A. BALLMAN and H. BROWN, J. Cryst. Growth 1 (1967) 3111.Google Scholar
  14. 14.
    R. R. NEURGAONKAR, W. K. CORY, J. R. OLIVER, E. J. SHARP, M. J. MILLER, W. W. CLARK III, G. L. WOOD and G. J. SALAMO, Mater. Res. Bull. 24 (1989) 589.CrossRefGoogle Scholar
  15. 15.
    S. KURODA and K. KUBOTA, J. Phys. Chem. Solids. 42 (1981) 573.CrossRefGoogle Scholar
  16. 16.
    F. F. LANGE and K. T. MILLER, Amer. Ceram. Soc. Bull. 66 (1987) 1498.Google Scholar
  17. 17.
    B. V. VELAMAKANNI and F. F. LANGE, J. Amer. Ceram. Soc. 74 (1991) 166.CrossRefGoogle Scholar
  18. 18.
    J. HOLLY, D. HAMPTON, S. B. SAVAGE and R. A. L. DREW, ibid. 75 (1992) 2726.CrossRefGoogle Scholar
  19. 19.
    I. A. AKSAY and C. H. SCHILLING, in “Ultrastructure processing of ceramics, glasses, and composites”, edited by L. L. HENCH and D. R. ULRICH (Wiley, New York, 1984) p. 439.Google Scholar
  20. 20.
    C. H. SCHILLING and I. A. AKSAY, in Transactions of the Canadian University-Industry Council on Advanced Ceramics, Third Workshop, Montreal 1987, edited by P. S. NICHOLSON. (Canadian University-Industrial Council on Advanced Ceramics, Montreal, Quebec, 1987) p. 2.Google Scholar
  21. 21.
    F. M. TILLER and C. TSAI, J. Amer. Ceram. Soc. 69 (1986) 882.CrossRefGoogle Scholar
  22. 22.
    H. HAMPTON, S.B. SAVAGE and R. A. L. DREW, in Cermic Transactions, Vol. 1 Ceramic Powder Science II, B, edited by G. MESSING, E. FULLER, Jr., and H. HAUSNER (American Ceramic Society, Westerville, OH, 1988) p. 749.Google Scholar
  23. 23.
    J. HOLLY, D. HAMPTON, S. B. SAVAGE and R. A. L. DREW, J. Amer. Ceram. Soc., 71 (1988) 1040.CrossRefGoogle Scholar
  24. 24.
    K. BRIDGER and M. MASSUDA, in Ceramic Transactions, Vol. 12 Ceramic Powder Science III, edited by G. L. MESSING, S. HIRANO and H. HAUSNER (American Ceramic Society, Westerville, OH, 1990) p. 507.Google Scholar
  25. 25.
    J. H. D. HAMPTON, S. B. SAVAGE and R. A. L. DREW, Br. Ceram. Tans. J. 91 (1992) 103.Google Scholar
  26. 26.
    T. T. FANG, N. T. WU and F. S. SHIAU, in press.Google Scholar
  27. 27.
    M. D. SACKS, in “Ultrastructure processing of ceramics, glasses, and composites”, edited by L. L. HENCH, and D. R. ULRICH, (Wiley, New York, 1984) p. 418.Google Scholar
  28. 28.
    Idem., Amer. Ceram. Soc. Bull. 63 (1984) 1510.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Tsang-Tse Fang
    • 1
  • Nan-Ti Wu
    • 1
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations