Journal of Materials Science

, Volume 30, Issue 13, pp 3351–3357 | Cite as

The morphology, chain structure and fracture behaviour of high-density polyethylene

Part II Static fatigue fracture testing
  • B. J. Egan
  • O. Delatycki


High-density polyethylene (HDPE) is being used more and more in critical long-term applications. For this reason it is important to have a strong understanding of those parameters which control the fracture behaviour of HDPE. In Part I of this work, fracture results were presented for eleven HDPE samples tested using a tensile testing machine. Such short-term tests do not accurately reflect the in-service loads on HDPE components, which tend to be low and static. It is, therefore, important to perform fracture tests under long-term static loads. The results of such testing are presented in this paper. The resistance to static fatigue was found to be most strongly dependent on molecular weight. Short branch concentration and short branch length were also found to exert an influence on the resistance to static fatigue. This result is similar to the findings presented in Part I of this work. However, there is some evidence that molecular weight influences fracture behaviour to a greater extent in the long-term tests. Notwithstanding, the similarity between the short-term and long-term results is important. It means that an early indication of the long-term performance of HDPE resins can be obtained from rapid comparative tests conducted using a tensile testing machine.


Fracture Behaviour HDPE Fracture Test Tensile Testing Machine Static Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. EGAN and O. DELTAYCKI, J. Mater. Sci. (1994) submitted.Google Scholar
  2. 2.
    R. FRASSINE, T. RICC‵, M. RINK and A. PAVAN, ibid. 23 (1988) 4027.CrossRefGoogle Scholar
  3. 3.
    J. A. KIES and B. J. CLARK, in “Proceedings of the 2nd International Conference on Fracture”, Brighton, April 1969, edited by P. L. PRATT (Chapman and Hall, London, 1969) p. 483.Google Scholar
  4. 4.
    J. -C. POLLET and S. J. BURNS, J. Am. Ceram. Soc. 62 (1979) 426.CrossRefGoogle Scholar
  5. 5.
    K. FRIEDRICH, Adv. Polym. Sci. 52–53 (1983) 225.CrossRefGoogle Scholar
  6. 6.
    V.V. MATVEYEV, A. Ya. GOL'DMAN, V. P. BUDTOV, Ye. L. PONOMAREVA and A. M. LOBANOV, Polym. Sci. USSR 21 (1979) 413.CrossRefGoogle Scholar
  7. 7.
    D. C. BASSET, A.M. HODGE and R. H. OLLEY, Farad. Soc. Disc. 68–69 (1979–80) 218.CrossRefGoogle Scholar
  8. 8.
    J. M. CRISSMAN and L. J. ZAPAS, in “Durability of Macromolecular Materials”, edited by R. K. Eby (ACS Symposium Series 95, Washington, DC, 1979) p. 289.Google Scholar
  9. 9.
    X. LU, X. WANG and N. BROWN, J. Mater. Sci. 23 (1988) 643.CrossRefGoogle Scholar
  10. 10.
    Y. L. HUANG and N. BROWN ibid. 23 (1988) 3648.CrossRefGoogle Scholar
  11. 11.
    B. J. EGAN and O. DELTAYCKI, ibid. 29 (1994) 6026.CrossRefGoogle Scholar
  12. 12.
    G. P. MARSHALL, Plast. Rubber Proc. Appl. 2 (1982) 169.Google Scholar
  13. 13.
    P. W. R. BEAUMONT and R. J. YOUNG, J. Mater. Sci. 10 (1975) 1334.CrossRefGoogle Scholar
  14. 14.
    W. W. ADAMS, D. YANG and E. L. THOMAS, ibid. 21 (1986) 2239.CrossRefGoogle Scholar
  15. 15.
    J. M. BRADY and E. L. THOMAS, ibid. 24 (1989) 3311.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 24 (1989) 3319.CrossRefGoogle Scholar
  17. 17.
    A. LUSTIGER and R. L. MARKHAM, Polymer 24 (1983) 1647.CrossRefGoogle Scholar
  18. 18.
    L. MANDELKERN and A. J. PEACOCK, in “Proceedings of an International Course and Conference on the Interfaces between Mathematics, Chemistry and Computer Science”, Dubrovnik, Yugoslavia, 1987, edited by R. C. LACHER (Elsevier Applied Science, New York, 1988) p. 201.Google Scholar
  19. 19.
    R. ALAMO and L. MANDELKERN, Macromolecules 22 (1989) 1273.CrossRefGoogle Scholar
  20. 20.
    F. ANIA, H. G. KILIAN and F. J. BALTÁ CALLEJA, J. Mater. Sci. Lett. 5 (1986) 1183.CrossRefGoogle Scholar
  21. 21.
    F. J. BALTÁ CALLEJA, J. C. GONZÁLEZ ORTEGA and J. MARTINEZ de Salazar, Polymer 19 (1978) 1094.CrossRefGoogle Scholar
  22. 22.
    G. BODOR, H. J. DALCOLMO and O. SCHRÖTER, Coll. Polym. Sci. 267 (1989) 480.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • B. J. Egan
    • 1
  • O. Delatycki
    • 1
  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of MelbourneParkvilleAustralia

Personalised recommendations