Advertisement

Journal of Materials Science

, Volume 30, Issue 13, pp 3291–3299 | Cite as

Grain size effects on cyclic fatigue and crack-growth resistance behaviour of partially stabilized zirconia

  • M. J. Hoffman
  • Yiu-Wing Mai
  • R. H. Dauskardt
  • J. Ager
  • R. O. Ritchie
Article

Abstract

Cyclic fatigue crack growth and crack-resistance behaviour was studied in partially stabilized zirconia (PSZ) with three different cubic-phase grain sizes following sub-eutectoid heat treatments. Raman spectroscopy was used to determine the extent of phase transformation around the cracks for both cyclic and monotonic loading conditions. All tests were on “long”, through thickness cracks using compact-tension specimens. Predictions of crack-tip shielding were made following determination of toughening parameters using crackresistance data. It was found that the dominant factors affecting cyclic fatigue-crack growth were the level of crack-tip shielding, as a result of phase transformation, and the intrinsic toughness of the material. Grain size did not appear to significantly affect fatigue crack-growth behaviour.

Keywords

Zirconia Fatigue Crack Raman Spectroscopy Fatigue Crack Growth Monotonic Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. EVANS and E. R. FULLER, Metall. Trans. 50 (1974) 27.Google Scholar
  2. 2.
    A. G. EVANS, Int. J. Fracture 16 (1980) 485.CrossRefGoogle Scholar
  3. 3.
    M. J. REECE, F. GUIU and M. F. R. SAMMUR, J. Amer. Ceram. Soc. 72 (1989) 348.CrossRefGoogle Scholar
  4. 4.
    L. EWART and S. SURESH J. Mater. Sci. 22 (1987) 1173.CrossRefGoogle Scholar
  5. 5.
    S. LATHABAI, J. RÖDEL and B. R. LAWN, J. Amer. Ceram. Soc. 74 (1991) 1340.CrossRefGoogle Scholar
  6. 6.
    M. MASUDA, T. SOMA, M. MATSUI and I. ODA, J. Eur. Ceram. Soc. 6 (1990) 253.CrossRefGoogle Scholar
  7. 7.
    M. V. SWAIN and V. ZELIZKO, Adv. Ceram. 24 (1988) 595.Google Scholar
  8. 8.
    M. J. HOFFMAN, W. LENTZ, M. V. SWAIN and Y. -W. MAI, J. Eur. Ceram. Soc. 11 (1992) 445.CrossRefGoogle Scholar
  9. 9.
    R. H. DAUSKARDT, W. YU and R.O. RITCHIE, J. Amer. Ceram. Soc. 70 (1987) C248.CrossRefGoogle Scholar
  10. 10.
    R. H. DAUSKARDT, D. B. MARSHALL and R.O. RITCHIE, Ibid. 73 (1990) 893.CrossRefGoogle Scholar
  11. 11.
    S. LATHABAI, Y.-W. MAI and B. R. LAWN, Ibid. 72 (1989) 1760.CrossRefGoogle Scholar
  12. 12.
    X. -Z. HU and Y.-W. MAI, Ibid. 75 (1992) 848.CrossRefGoogle Scholar
  13. 13.
    X. -Z. HU, Y.-W. MAI and S. LATHABAI, J. Eur. Ceram. Soc. 9 (1992) 213.CrossRefGoogle Scholar
  14. 14.
    R. H. DAUSKARDT, Acta Metall Mater 41 (1993) 2765.CrossRefGoogle Scholar
  15. 15.
    D. DAVIDSON, J. B. CAMPBELL and J. LANKFORD, Ibid. 39 (1991) 1319.CrossRefGoogle Scholar
  16. 16.
    S. -Y. LIU and I-W. CHEN, J. Amer. Ceram. Soc. 74 (1991) 1206.CrossRefGoogle Scholar
  17. 17.
    M. J. HOFFMAN, R. H. DAUSKARDT, Y. -W. MAI and R.O. RITCHIE, “in Science and Technology of Zirconia V,” edited by S.P.S. BADWAL, M.J. BANNISTER, and R.H.J. HANNINK (Technomic Publishing Co., Lancaster, PA, 1993) 321.Google Scholar
  18. 18.
    T. LIN, A. G. EVANS and R. O. RITCHIE, Acta Metall. 34 (1986) 2205.CrossRefGoogle Scholar
  19. 19.
    J. -K. SHANG and R. O. RITCHIE, Metall. Trans A, 20A (1989) 897.CrossRefGoogle Scholar
  20. 20.
    S. -Y. LIU and I-W. CHEN, J. Amer. Ceram. Soc. 74 (1991) 1197.CrossRefGoogle Scholar
  21. 21.
    A. H. HEUER, M. RÜHLE and D. B. MARSHALL, Ibid. 73 (1990) 1084.CrossRefGoogle Scholar
  22. 22.
    D. B. MARSHALL and M. V. SWAIN, J. Amer. Ceram. Soc. 71 (1988) 399.CrossRefGoogle Scholar
  23. 23.
    D. B. MARSHALL, M. C. SHAW, R. H. DAUSKARDT, R. O. RITCHIE, M. J. READEY and A. H. HEUER, Ibid. 73 (1990) 2659.CrossRefGoogle Scholar
  24. 24.
    F. GUIU, M. J. REECE and D. A. J. VAUGHAN, in “Fatigue of Advanced Materials”, edited by R.O. RITCHIE, R.H. DAUSKARDT and B.N. COX (MCEP Publishing Ltd., Edgbaston, UK 1991) p. 193.Google Scholar
  25. 25.
    H. N. KO, J. Mater. Sci. Lett. 8 (1989) 1438.CrossRefGoogle Scholar
  26. 26.
    T. LIU, R. MATT and G. GRATHWOHL, J. Mater. Design. 14 (1993) 159.CrossRefGoogle Scholar
  27. 27.
    T. LIU and Y. -W. MAI, J. Amer. Ceram. Soc. 76 (1993) 2601.CrossRefGoogle Scholar
  28. 28.
    G. H. SIH, “Handbook of stress intensity factors,” 1.5.1-1 (1973).Google Scholar
  29. 29.
    R. H. DAUSKARDT, D. K. VEIRS and R. O. RITCHIE, J. Amer. Ceram. Soc. 72 (1989) 1124.CrossRefGoogle Scholar
  30. 30.
    D. K. VEIRS, J. W. AGER, III, E. T. LOUCKS and G. M. ROSENBLATT, Appl. Optics 29 (1990) 4969.CrossRefGoogle Scholar
  31. 31.
    D. K. VEIRS, J. W. AGER, III and G. M. ROSENBLATT, Ceram. Trans. 19 (1991) 1043.Google Scholar
  32. 32.
    D. M. STUMP and B. BUDIANSKY, Acta Metall. 37 (1989) 3297.CrossRefGoogle Scholar
  33. 33.
    B. BUDIANSKY, J. W. HUTCHINSON and J. C. LAMBROPOULOS, Int. J. Solids Struct. 19 (1983) 337.CrossRefGoogle Scholar
  34. 34.
    D. M. STUMP and B. BUDIANSKY, Ibid. 25 (1989) 635.CrossRefGoogle Scholar
  35. 35.
    M. HOFFMAN and Y. -W. MAI, in “Structural Ceramics”, Proceedings of IUMRS, International Meeting of Advanced Materials, Japan (Materials Research Society, Pittsburg, PA, 1993) p. 365.Google Scholar
  36. 36.
    R. H. DAUSKARDT, W. C. CARTER, D. K. VEIRS and R. O. RITCHIE, Acta Metall. Mater. 38 (1990) 2327.CrossRefGoogle Scholar
  37. 37.
    M. J. HOFFMAN and S. WAKAYAMA, Tokyo Metropolitan University, Tokyo, Japan (1993), unpublished data.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. J. Hoffman
    • 1
  • Yiu-Wing Mai
    • 1
  • R. H. Dauskardt
    • 2
  • J. Ager
    • 3
  • R. O. Ritchie
    • 3
    • 4
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical EngineeringUniversity of SydneySydneyAustralia
  2. 2.Department of Materials Science and EngineeringStanford UniversitytanfordUSA
  3. 3.Lawrence Berkeley LaboratoryCenter for Advanced Materials, Materials Sciences DivisionUSA
  4. 4.Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations