Journal of Materials Science

, Volume 30, Issue 11, pp 2968–2980 | Cite as

Fractal and topological characterization of branching patterns on the fracture surface of cross-linked dimethacrylate resins

Part I
  • Z. V. Djordjevic
  • X. Feng Li
  • Won Soo Shin
  • S. L. Wunder
  • G. R. Baran


The branching patterns formed as a result of crack growth in dimethacrylate resins below their glass transition temperatures looked similar to fractal trees. The skeletons of the patterns were analysed numerically for their topological and geometrical properties. The number of branches, Ni, mean branch lengths, Ni, and branch angles of a particular order, defined according to the Strahler and inverted Weibel schemes, followed exponential scaling behaviour: Ni ∼ (Rb)i and Li ∼ (Rl)i. Using the relationship for the fractal dimension D=In RB/In RL, a value of D=1.4 was obtained for the fracture pattern. Fractal behaviour was also examined by the box-counting method which indicated a power-law dependence of the mass on the box size with fractal dimension exponent D=1.4 in the case of the fracture pattern. However, the mass-shell method for both the fracture pattern and the fractal trees gave an exponential increase of mass with distance from the origin, rather than the power-law behaviour expected for fractals. This was attributed to the fact that branches of different sizes were distributed in restricted regions of space closer to the periphery, rather than uniformly over the whole pattern.


Fracture Surface Glass Transition Fractal Dimension Glass Transition Temperature Fractal Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Doyle, A. Maranci, E. Orowan Frs and S. T. Stark, Proc. R. Soc. (Lond.) A329 (1972) 137.CrossRefGoogle Scholar
  2. 2.
    E. H. Andrews, “Fracture in Polymers” (American Elsevier, New York, 1968).Google Scholar
  3. 3.
    A. J. Kinloch and R. J. Young, “Fracture Behaviour of Polymers” (Applied Science, London, New York, 1983).Google Scholar
  4. 4.
    H. H. Kausch, “Polymer Fracture”, 2nd Edn (Springer, Berlin Heidelberg New York, 1987).Google Scholar
  5. 5.
    C. S. Smith, Rev. Mod. Phys. (1964) 524.Google Scholar
  6. 6.
    F. Spaepen and D. Turnbull, Scripta Metall. 8 (1974) 563.CrossRefGoogle Scholar
  7. 7.
    R. E. Horton, Geol. Soc. Am. Bull. 56 (1945) 275.CrossRefGoogle Scholar
  8. 8.
    A. N. Strahler, Trans. Am. Geophys. Union 34 (1953) 345.Google Scholar
  9. 9.
    Idem, ibid. 38 (1957) 913.CrossRefGoogle Scholar
  10. 10.
    E. R. Weibel, “Morphometry of the human lung” (Springer, Berlin, 1963).CrossRefGoogle Scholar
  11. 11.
    E. L. Hinrichsen, K. J. Maloy, J. Feder and T. Jossang, J. Phys. A 22 (1989) L271.CrossRefGoogle Scholar
  12. 12.
    J. Feder, E. L. Hinrichsen, K. Maloy and T. Jossang, Phys. D 38 (1989) 104.CrossRefGoogle Scholar
  13. 13.
    P. Ossadnik, Phys. Rev. A 45 (1992) 1058.CrossRefGoogle Scholar
  14. 14.
    B. B. Mandelbrot, “The Fractal Geometry of Nature” (Freeman, San Francisco, 1982).Google Scholar
  15. 15.
    J. Feder, “Fractals” (Plenum, New York, 1988).CrossRefGoogle Scholar
  16. 16.
    T. Vicsek, “Fractal Growth Phenomena” (World Scientific, Singapore, 1989).CrossRefGoogle Scholar
  17. 17.
    P. Meakin, Science 252 (1991) 226.CrossRefGoogle Scholar
  18. 18.
    P. Meakin, G. Li, L. M. Sander, E. Louis and F. Guinea, J. Phys. A 22 (1989) 1393.CrossRefGoogle Scholar
  19. 19.
    T. A. Witten and L. N. Sander, Phys. Rev. Lett. 47 (1981) 1400.CrossRefGoogle Scholar
  20. 20.
    P. Meakin, in “Phase Transitions and Critical Phenomena”, edited by C. Domb and J. L. Lebowitz (Academic Press, New York, 1987) pp. 336–489.Google Scholar
  21. 21.
    K. J. Maloy, J. Feder and T. Jossang, Phys. Rev. Lett. 55 (1985) 2688.CrossRefGoogle Scholar
  22. 22.
    K. J. Maloy, F. Boger, J. Feder, T. Jossang and P. Meakin, Phys. Rev. A 36 (1987) 318.CrossRefGoogle Scholar
  23. 23.
    H. A. Laroche, J. F. Fernandez, M. Octavio, A. G. Loeser and C. J. Lobb, ibid. 44 (1991) R6185.CrossRefGoogle Scholar
  24. 24.
    E. Ben-Jacob and P. Garik, Phys. D 38 (1989) 16, and references therein.CrossRefGoogle Scholar
  25. 25.
    F. Family and T. Vicsek, “Dynamics of Fractal Surfaces”, (World Scientific, Singapore, 1991).CrossRefGoogle Scholar
  26. 26.
    B. Mandelbrot, Phys. Scripta 32 (1985) 257.CrossRefGoogle Scholar
  27. 27.
    F. Grey and J. K. Kjems, Phys. D 38 (1989) 154.CrossRefGoogle Scholar
  28. 28.
    W. S. Shin, X. F. Li, B. Schwartz, S. Wunder and G. Baran, J. Dent. Mater., 9 (1993) 317.CrossRefGoogle Scholar
  29. 29.
    R. E. Robertson and V. E. Mindroiu, J. Mater. Sci. 20 (1985) 2801.CrossRefGoogle Scholar
  30. 30.
    Idem, Polym. Eng. Sci. 27 (1987) 55.CrossRefGoogle Scholar
  31. 31.
    T. Y. Pan, R. E. Robertson and F. E. Filisko, J. Mater. Sci. 24 (1989) 3635.CrossRefGoogle Scholar
  32. 32.
    J. Vannimenus, in “Universalities in Condensed Matters”, edited by R. Jullien, L. Peliti, R. Rammal and N. Boccara (Springer, Berlin, 1985).Google Scholar
  33. 33.
    N. MacDonald, “Trees and Networks in Biological Models” (Wiley, New York, 1983).Google Scholar
  34. 34.
    B. West, “Fractal Physiology and Chaos in Medicine” (World Scientific, Singapore, 1990), and references therein.CrossRefGoogle Scholar
  35. 35.
    F. Caserta, H. E. Stanley, W. D. Eldred, G. Daccord, R. E. Hausman and J. Nittmann, Phys. Rev. Lett. 64 (1990) 95.CrossRefGoogle Scholar
  36. 36.
    F. Family, B. R. Masters and D. E. Platt, Phys. D 38 (1989) 98.CrossRefGoogle Scholar
  37. 37.
    T. Matsuo, R. Okeda, M. Takahashi and M. Funata, Forma 5 19 (1990).Google Scholar
  38. 38.
    J. Vannimenus and X. G. Viennot, J. Stat. Phys. 54 (1989) 1529.CrossRefGoogle Scholar
  39. 39.
    V. K. Horvath and H. J. Herrmann, Chaos Solitons Fractals 1 (1991) 395.CrossRefGoogle Scholar
  40. 40.
    A. C. Moloney and H. H. Kausch, J. Mater. Sci. Lett. 4 (1985) 289.CrossRefGoogle Scholar
  41. 41.
    K. Horsfield, J. Appl. Physiol. 68 (1990) 457.CrossRefGoogle Scholar
  42. 42.
    D. G. Tarboton, R. L. Bras and I. Rodigueziturbe, Water Resources Res. 24 (1988) 1317.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Z. V. Djordjevic
    • 1
  • X. Feng Li
    • 1
  • Won Soo Shin
    • 1
  • S. L. Wunder
    • 1
  • G. R. Baran
    • 1
    • 2
  1. 1.Department of ChemistryTemple UniversityPhiladelphia
  2. 2.School of DentistryTemple UniversityPhiladelphiaUSA

Personalised recommendations