Advertisement

Journal of Materials Science

, Volume 30, Issue 11, pp 2956–2961 | Cite as

Low temperature stress relaxation of nanocrystalline nickel

  • L. I. Trusov
  • T. P. Khvostantseva
  • V. A. Solov'ev
  • V. A. Mel'nikova
Papers

Abstract

Stress relaxation in nanocrystalline nickel within the temperature range 523–673 K in a uniaxial compression regime is studied in the present investigation. The results obtained for coarser grained nickel are given for comparison. An average strain rate of nanocrystalline nickel within the investigated range of temperatures is 1.75 × 10−5–3.03 × 10−5s−1. The presence of two types of stress relaxation dependencies are shown. The most likely strain mechanism is grain boundary sliding controlled by grain boundary diffusion for temperatures between 623 and 673 K.

Keywords

Polymer Nickel Material Processing Stress Relaxation Uniaxial Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. D. Morochov, L. I. Trusov and S. P. Chigik, in “Ultrafine Metal Medium” (Atomizdat, Moscow, 1977, in Russian) p. 264.Google Scholar
  2. 2.
    H. Gleiter, Progress Mater. Sci. 33 (1989) 223.CrossRefGoogle Scholar
  3. 3.
    L. I. Trusov, T. P. Khvostantseva, V. I. Novikov, M. Y. Tanakov and V. Y. Varyanitsa, in “Proceedings of the Sixth International Conference on Mechanical Behaviour of Materials, Kyoto”, Vol. 3, edited by Masahiro Jono and Tatsuo Inoue (Tokyo, Pergamon Press, 1991) p. 667.Google Scholar
  4. 4.
    V. G. Gryasnov, V. A. Solov'ev and L. I. Trusov, Scripta Metall. Mater. 24 (1990) 1529.CrossRefGoogle Scholar
  5. 5.
    G. W. Nieman, J. R. Weertman and R. W. Siegel, ibid. 23 (1989) 2013.CrossRefGoogle Scholar
  6. 6.
    J. S. Jang and C. C. Koch, ibid. 24 (1990) 1599.CrossRefGoogle Scholar
  7. 7.
    A. H. Chokshi, A. Rosen, J. Karch and H. Gleiter, ibid. 23 (1989) 1679.CrossRefGoogle Scholar
  8. 8.
    H. Chang, H. J. Höfler, C. J. Alstetter and R. S. Averback, ibid. 25 (1991) 1161.CrossRefGoogle Scholar
  9. 9.
    J. Karch, R. Birringer and H. Gleiter, Nature 330 (1987) 556.CrossRefGoogle Scholar
  10. 10.
    G. W. Nieman, J. R. Weertman and R. W. Siegel, Scripta Metall. Mater. 24 (1990) 145.CrossRefGoogle Scholar
  11. 11.
    H. Hahn and R. Averback, J. Amer. Ceram. Soc. 74 (1991) 2918.CrossRefGoogle Scholar
  12. 12.
    L. G. Khvostantsev, L. F. Vereshagin and A. P. Novikov, High Temperature High Pressure 9 (1977) 637.Google Scholar
  13. 13.
    Y. Sakka, J. Mater. Sci. Lett. 8 (1989) 273.CrossRefGoogle Scholar
  14. 14.
    J. J. Burke and V. Weiss (Eds) “ Surface Treatments for Improved Performance and Properties” (Plenum Press, New York, 1982) p. 224.Google Scholar
  15. 15.
    J. W. Park and C. J. Altstetter, Met. Trans. 18A (1987) 43.CrossRefGoogle Scholar
  16. 16.
    V. N. Lapovok, V. I. Novikov, S. V. Svirida, A. N. Semenikhin and L. I. Trusov, Solid State Physics (in Russian) 25 (1983) 1846.Google Scholar
  17. 17.
    V. I. Novikov, V. Y. Ganelin, L. I. Trusov, V. G. Gryaznov, V. N. Lapovok and S. A. Zeer, ibid. 28 (1986) 1251.Google Scholar
  18. 18.
    A. Lasalmonie and J. L. Strudel, J. Mater. Sci. 6 (1986) 1837.CrossRefGoogle Scholar
  19. 19.
    J. P. Poirier, in “Creep of Crystals” edited by A. H. Cook, W. B. Harland, N. F. Hughes, A. Putnis, J. E. Sclater and H. R. A. Thomson (Cambridge University Press, 1985) p. 260.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • L. I. Trusov
    • 1
  • T. P. Khvostantseva
    • 1
  • V. A. Solov'ev
    • 2
  • V. A. Mel'nikova
    • 3
  1. 1.Scientific-Research Enterprise “Ultram”MoscowRussia
  2. 2.Central Scientific Research Institute for Ferrous MetalsMoscowRussia
  3. 3.Institute of Materials Science ProblemsKievUkraine

Personalised recommendations