Journal of Materials Science

, Volume 30, Issue 11, pp 2930–2935 | Cite as

Plastic deformation of Zr-Sn polycrystals at intermediate temperatures

  • Z. Trojanová
  • A. Dlouhý
  • P. Lukáĉ


The yield stress and the activation volume for Zr-Sn alloys with 0.74, 2.85, 4.27 and 6.19 wt% Sn have been measured at temperatures between 400 and 750 K. The temperature dependence of the yield stress exhibits a plateau except for the alloy with the highest content of tin. The yield stress increases with increasing content of tin atoms. A non-monotonic variation of the activation volume with temperature has been observed for pure zirconium and for Zr-Sn alloys with 0.74 and 2.85 wt% Sn. The maximum value of the activation volume (at about 600 K) decreases with increasing content of tin. Dynamic strain ageing is considered to be responsible for the maximum in the temperature dependence of the activation volume. The dislocation structure has been observed. The experimental results are interpreted in terms of a simple model which considers that the flow stress is determined by thermally activated glide of dislocations through obstacles, dynamic strain ageing and a strengthening effect of tin atoms.


Polymer Zirconium Plastic Deformation Simple Model Flow Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Trojanová and P. Lukáč, Crystal Res. Technol. 19 (1984) 401.CrossRefGoogle Scholar
  2. 2.
    Z. Trojanová, P. Lukáč, A. Dlouhý and H.-J. Heinitz, Czech. J. Phys. B35 (1985) 298.CrossRefGoogle Scholar
  3. 3.
    C. Yin, M. Doner and H. Conrad, Metall. Trans. 14A (1983) 2545.CrossRefGoogle Scholar
  4. 4.
    P. Lukáč and Z. Trojanová, in “Strength of metals and alloys”, edited by P. O. Kettunen, T. K. Lepisto and M. E. Lehtonen (Pergamon, Oxford, 1988) p. 935.Google Scholar
  5. 5.
    B. Ramaswami and G. B. Craig, Trans. AIME 239 (1967) 1226.Google Scholar
  6. 6.
    P. Lukáč, M. Hamerský and Z. Trojanová, in “Creep and fracture of engineering materials and structures”, edited by B. W. Wilshire and R. W. Evans (Institute of Metals, London, 1987) p. 49.Google Scholar
  7. 7.
    S. I. Hong, Mater. Sci. Eng. 76 (1985) 77.CrossRefGoogle Scholar
  8. 8.
    G. A. Malygin, Phys. Status Solidi (a), 72 (1982) 493.CrossRefGoogle Scholar
  9. 9.
    M. Pahutová, J. Čadek and V. Černý, J. Nucl. Mater. 68 (1977) 111.CrossRefGoogle Scholar
  10. 10.
    V. Derovic, G. C. Weatherby and R. G. Fleck, Can. Metall. Q. 24 (1985) 253.CrossRefGoogle Scholar
  11. 11.
    A. Dlouhý, PhD thesis, Charles University, Praha (1986).Google Scholar
  12. 12.
    E. Kohn and D. P. Dunne, Metallography 10 (1977) 341.CrossRefGoogle Scholar
  13. 13.
    O. T. Woo, G. J. Carpenter and S. R. MacEwen, J. Nucl. Mater. 87 (1987) 70.CrossRefGoogle Scholar
  14. 14.
    Z. Trojanová, P. Lukáč, F. Král, R. Král, F. F. Lavrentev and V. N. Nikiforenko, Mater. Sci. Eng. A 137 (1991) 151.CrossRefGoogle Scholar
  15. 15.
    B. Heritier, M. J. Luton and J. J. Jonas, Metal Sci. 8 (1974) 41.CrossRefGoogle Scholar
  16. 16.
    M. J. Luton and J. J. Jonas, Can. Metall. Q. 11 (1972) 79.CrossRefGoogle Scholar
  17. 17.
    P. Soo and G. T. Higgins, Acta Metall. 16 (1968) 177.CrossRefGoogle Scholar
  18. 18.
    P. Das Gupta and V. S. Arunachalam, J. Mater. Sci. 3 (1968) 271.CrossRefGoogle Scholar
  19. 19.
    W. B. James and T. J. Davis, Metal Sci. 8 (1974) 84.CrossRefGoogle Scholar
  20. 20.
    U. F. Kocks, A. S. Argon and M. F. Ashby, Progr. Mater. Sci. 19 (1975) 1.CrossRefGoogle Scholar
  21. 21.
    Z. Trojanová, B. Smola, P. Lukáč and A. Dlouhý, in “Strength of metals and alloys”, edited by H. J. McQueen, J.-P. Bailon, J. J. Dickson, J. J. Jonas and M. G. Abken (Pergamon, Oxford, 1985) p. 171.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Z. Trojanová
    • 1
  • A. Dlouhý
    • 1
  • P. Lukáĉ
    • 1
  1. 1.Department of Metal PhysicsCharles UniversityPraha 2Czech Republic

Personalised recommendations