Advertisement

Journal of Materials Science

, Volume 30, Issue 11, pp 2859–2865 | Cite as

Strength, hardness and fracture toughness of a complex nickel silicide containing ductile phase particles

  • Z. Li
  • E. M. Schulson
Papers

Abstract

Measurements have been made at room temperature of the strength and fracture toughness of a complex nickel silicide containing particles of a ductile phase. The matrix was either a single-phase L12 distorted Ni3Si (β2) or a two-phase Ni3Si (β1) and Ni31Si12 (γ) mixture. The particles were a solid solution of Ni(Si) encased within a rim of β1; they contained a dispersion of β1 precipitates. The principal variable was the particle size, and this had little effect on the properties. The results show that the compressive yield strength (≃ 1200 MPa), the compressive ductility (2–10%) and the fracture toughness (17 ± 3 MPa m1/2) are relatively high. The toughness and ductility are attributed to the plastic deformation and ductile fracture of the crack-stopping Ni(Si) particles.

Keywords

Polymer Particle Size Nickel Solid Solution Plastic Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. K. Elliot, G. R. Odette, G. E. Lucas and J. W. Sheckherd, in “High Temperature/High Performance Composites”. Proceedings of the Materials Reserach Society Symposium, Vol. 120 (1988) p. 95.CrossRefGoogle Scholar
  2. 2.
    G. R. Odette, B. L. Chao, J. W. Sheckherd and G. E. Lucas, Acta Metall. 40, (1992) 2381.CrossRefGoogle Scholar
  3. 3.
    P. R. Subramanian, M. G. Mendiratta, D. B. Miracle and D. M. Dimiduk, in “Intermetallic Matrix Composites”, Proceedings of the Materials Research Society Symposium, Vol. 194 (1990) p. 147.CrossRefGoogle Scholar
  4. 4.
    J. D. Rigney, J. J. Lewandowski, L. Matson, M. G. Mendiratta and D. M. Dimiduk, in “High Temperature Ordered Intermetallic Compounds IV”, Proceedings of the Materials Reserach Society Symposium, Vol. 213 (1990) p. 1001.CrossRefGoogle Scholar
  5. 5.
    M. G. Mendiratta, J. J. Lewandowski, and D. M. Dimiduk, Metall. Trans. 22A (1991) 1573.CrossRefGoogle Scholar
  6. 6.
    T. Takasugi, M. Nagashima and O. Izumi, Acta Metall. 38 (1990) 747.CrossRefGoogle Scholar
  7. 7.
    W. C. Oliver, in “High Temperature Ordered Intermetallic Alloys III”, Proceedings of the Materials Research Society, Vol. 133, (1989) 397.CrossRefGoogle Scholar
  8. 8.
    A. I. Taub, C. L. Briant, S. C. Huang, K.-M. Chang and M. R. Jackson, Scripta Metall. 20 (1986) 129.CrossRefGoogle Scholar
  9. 9.
    E. M. Schulson, L. J. Briggs and I. Baker, Acta Metall, 38 (1990) 207.CrossRefGoogle Scholar
  10. 10.
    I. Baker, J. Yuan and E. M. Schulson, Metall. Trans. 22A (1992) 1993.Google Scholar
  11. 11.
    T. Nose and T. Fujii, J. Am. Ceram. Soc. 71 (1988) 328.CrossRefGoogle Scholar
  12. 12.
    R. T. Dehoff and F. N. Rhines (eds), “Quantitative Microscopy”, (McGraw-Hill, New York, NY, 1968).Google Scholar
  13. 13.
    Y. Oya and T. Suzuki Z. Metallkde, 21 (1983).Google Scholar
  14. 14.
    C. D. Turner, W. O. Powers and J. A. Wert, Acta Metall. 37 (1989) 2635.CrossRefGoogle Scholar
  15. 15.
    M. F. Shby, F. J. Blunt and M. Bannister, ibid. 7 (1989) 1847.Google Scholar
  16. 16.
    K. S. Ravichandran, Scripta Metall. 26 (1992) 1389.CrossRefGoogle Scholar
  17. 17.
    D. Tabor, “Hardness of Metals” (Clarenden Press, London, 1951).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Z. Li
    • 1
  • E. M. Schulson
    • 1
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations