Advertisement

Journal of Materials Science

, Volume 30, Issue 11, pp 2803–2808 | Cite as

Hydrothermal stability of pure and modified microporous silica membranes

  • G. P. Fotou
  • Y. S. Lin
  • S. E. Pratsinis
Papers

Abstract

The hydrothermal stability of microporous (0.6 nm) silica membranes prepared by the sol-gel process was studied at 600 and 800 °C in a 50 mol% steam atmosphere. The membranes remained microporous after calcination and hydrothermal treatment at 600 °C for 30 h but a substantial reduction in the specific surface area (48%) accompanied by a 77% decline in the micropore volume was observed. Hydrothermal treatment at 800 °C for 30 h resulted in complete densification of the membranes. The effect of alumina and magnesia on the hydrothermal stability of the membranes was investigated. Both Al2O3 and MgO were introduced into the membranes by doping the starting silica sol with controlled amounts of the corresponding nitrate salts. Alumina did not change the pore structure of the silica membranes which retained a large part of their microporosity after hydrothermal treatment at 600 °C compared to pure silica membranes. Doping with magnesia, however, resulted in lower specific surface areas relative to those of pure and alumina-doped silica membranes after drying and calcination. These effects on the stability of the membranes are explained by assuming structural changes in the membranes catalysed by magnesia.

Keywords

Magnesia Al2O3 Steam Calcination Hydrothermal Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Bhave, “Inorganic Membranes, Synthesis, Characterization and Applications” (Van Nostrand Reinhold, New York, NY, 1991).CrossRefGoogle Scholar
  2. 2.
    R. J. R. Uhlhorn, K. Keizer and A. J. Burggraaf, J. Membrane Sci. 66 (1992) 271.CrossRefGoogle Scholar
  3. 3.
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603.CrossRefGoogle Scholar
  4. 4.
    G. R. Gavalas, C. E. Megiris and S. W. Nam, Chem. Eng. Sci. 44 (1989) 1829.CrossRefGoogle Scholar
  5. 5.
    M. Tsapatsis, S. Kim, S. K. Nam and G. Gavalas, Ind. Eng. Chem. Res. 30 (1991) 2152.CrossRefGoogle Scholar
  6. 6.
    M. Tsapatsis and G. R. Gavalas, AIChE J. 38 (1992) 847.CrossRefGoogle Scholar
  7. 7.
    C. E. Megiris and J. H. E. Glezer, Ind. Eng. Chem. Res. 31 (1992) 1293.CrossRefGoogle Scholar
  8. 8.
    T. Okudo and H. Inoue, J. Membrane Sci. 42 (1989) 109.CrossRefGoogle Scholar
  9. 9.
    H. Y. Ha, S. W. Nam. S.-A. Hong and W. K. Lee, ibid. 85 (1993) 279.CrossRefGoogle Scholar
  10. 10.
    A. Kaiser and H. Schmidt, J. Non-Cryst. Solids 63 (1984) 261.CrossRefGoogle Scholar
  11. 11.
    Idem, J. Membrane Sci. 22 (1985) 257.CrossRefGoogle Scholar
  12. 12.
    R. J. R. Uhlhorn, M. H. B. J. Huis In't Veld, K. Keizer and A. J. Burggraaf, J. Mater. Sci. Lett. 8 (1989) 1135.CrossRefGoogle Scholar
  13. 13.
    J. H. A. Hekkink, R. S. A. De Lange, A. A. Ten Hoere, P. J. A. M. Blankenvoorde, K. Keizer and A. J. Burggraaf, Key Eng. Mater. 61, 62 (1991) 375.Google Scholar
  14. 14.
    R. S. A. De Lange, PhD thesis, University of Twente, The Netherlands (1993).Google Scholar
  15. 15.
    S. Kitao and M. Asaeda, Key Eng. Mater. 61, 62 (1991) 267.Google Scholar
  16. 16.
    R. K. Iler, “The Chemistry of Silica” (Wiley, New York, NY, 1979).Google Scholar
  17. 17.
    R. Leboda and E. Mendyk, Mater. Chem. Phys. 27 (1991) 189.CrossRefGoogle Scholar
  18. 18.
    C. -H. Chang, R. Gopalan and Y. S. Lin, J. Membrane Sci. 91 (1994) 27.CrossRefGoogle Scholar
  19. 19.
    Y. S. Lin, C.-H. Chang and R. Gopalan, Ind. Eng. Chem. Res. 33 (1994) 860.CrossRefGoogle Scholar
  20. 20.
    M. K. Akhtar, S. E. Pratsinis and S. V. R. Mastrangelo, J. Am. Ceram. Soc. 75 (1992) 3408.CrossRefGoogle Scholar
  21. 21.
    Idem, J. Mater. Res. (1994) in press.Google Scholar
  22. 22.
    C. J. Brinker and G. W. Scherer, “Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing” (Academic Press, San Diego, CA, 1990).Google Scholar
  23. 23.
    J. C. Hulling and G. L. Messing, J. Am. Ceram. Soc. 74 (1991) 2374.CrossRefGoogle Scholar
  24. 24.
    Y. Wang, D. X. Li and W. J. Thomson, J. Mater. Res. 8 (1993) 195.CrossRefGoogle Scholar
  25. 25.
    C. Horvath and K. Kawazoe, J. Chem. Eng. Jpn 16 (1983) 470.CrossRefGoogle Scholar
  26. 26.
    A. Matsuda, Y. Matsuno, S. Katayama and T. Tsuno, J. Mater. Sci. Lett. 8 (1989) 902.CrossRefGoogle Scholar
  27. 27.
    A. Matsuda, Y. Matsuno, S. Katayama, T. Tsuno, N. Tohge and T. Minami, Nippon Seramikkusu Kyokai Gukujutsu Ronbunski 99 (1991) 545.CrossRefGoogle Scholar
  28. 28.
    L. Chu, W. A. Zeltner and M. A. Anderson, in “Better Ceramics Through Chemistry VI”, Materials Research Society Symposium, Proceedings, Vol. 346 San Francisco, April 1994, edited by C. Sanchez, J. Brinker, M. L. Mecartney and A. Cheetham (Materials Research Society, Pittsburgh, PA, 1994) p. 481.Google Scholar
  29. 29.
    W. G. Schlaffer, C. Z. Morgan and J. N. Wilson, J. Phys. Chem. 61 (1958) 714.CrossRefGoogle Scholar
  30. 30.
    C. R. Adams and H. H. Voge, ibid. 61 (1958) 722.CrossRefGoogle Scholar
  31. 31.
    W. G. Schlaffer, C. R. Adams and J. N. Wilson, ibid. 69 (1965) 1530.CrossRefGoogle Scholar
  32. 32.
    L. H. Van Vlack, “Physical Ceramics for Engineers” (Addison-Wesley, Reading, MA, 1964).Google Scholar
  33. 33.
    W. H. Gitzen (ed.), “Alumina as a ceramic material” (The American Ceramic Society, Columbus, OH, 1970).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • G. P. Fotou
    • 1
  • Y. S. Lin
    • 1
  • S. E. Pratsinis
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations