Advertisement

Journal of Materials Science

, Volume 30, Issue 11, pp 2785–2792 | Cite as

Protonic and oxygen-ion conduction in SrZrO3-based materials

  • J. A. Labrincha
  • F. M. B. Marques
  • J. R. Frade
Papers

Abstract

Strontium zirconate-based materials have been studied as potential high-temperature protonic conductors. Yttrium for zirconium substitution, and lanthanum for strontium substitution were selected to demonstrate that changes in composition can be used as a tool to design the properties. At temperatures below about 900 ° C, both yttrium-doped and undoped strontium zirconate are mostly protonic conductors at oxygen partial pressures below about 1 Pa, and mixed ionic and p-type conductors at higher pressures. The main ionic contribution changes from mostly protonic to oxygen-ion conduction with increasing temperature, which may affect the performance of electrochemical devices. Yttrium for zirconium substitution enhances both the electronic and ionic conductivities. Lanthanum for strontium substitution suppresses protonic conduction and gives rise to mixed oxygen-ion and n-type conduction in reducing conditions.

Keywords

Zirconium Strontium Yttrium Lanthanum Ionic Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Anthony and M. Foex, in “Proceedings of symposium on magnetic hydrodynamic electrical power”, Vol. 3, (National Agency for International Publication Inc., New York, 1966) p. 265Google Scholar
  2. 2.
    T. Noguchi, T. Okubo and O. Yonemochi, J. Am. Ceram. Soc. 52 (1969) 179.CrossRefGoogle Scholar
  3. 3.
    H. Stetson and B. Schwartz, ibid. 44 (1961) 420.CrossRefGoogle Scholar
  4. 4.
    N. Suriyayothin and N. G. Eror, J. Mater. Sci. 19 (1984) 2775.CrossRefGoogle Scholar
  5. 5.
    M. Zborowska, M. Grylicki and J. Zborowski, Ceram. Int. 6 (1980) 99.CrossRefGoogle Scholar
  6. 6.
    S. Shin, H. H. Huang, M. Ishigame and H. Iwahara, et al, Solid State Ionics 40/41 (1990) 910.CrossRefGoogle Scholar
  7. 7.
    H. H. Huang, M. Ishigame and S. Shin, ibid. 47 (1991) 251.CrossRefGoogle Scholar
  8. 8.
    T. Hibino, K. Muzutani, T. Yajima and H. Iwahara, ibid. 57 (1992) 303.CrossRefGoogle Scholar
  9. 9.
    H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, ibid. 61 (1993) 65.CrossRefGoogle Scholar
  10. 10.
    H. Iwahara, T. Esaka, H. Uchida and N. Maeda, ibid. 3/4 (1981) 359.CrossRefGoogle Scholar
  11. 11.
    T. Scherban and A. S. Nowick, ibid. 35 (1989) 189.CrossRefGoogle Scholar
  12. 12.
    H. Iwahara, ibid. 52 (1992) 99.CrossRefGoogle Scholar
  13. 13.
    N. Bonanos, ibid. 53–56 (1992) 967.CrossRefGoogle Scholar
  14. 14.
    T. Yajima, H. Iwahara and H. Uchida, ibid. 47 (1991) 117.CrossRefGoogle Scholar
  15. 15.
    J. F. Liu and A. S. Nowick, ibid. 50 (1992) 131.CrossRefGoogle Scholar
  16. 16.
    A. Mitsui, M. Miyayama and H. Yanagida, ibid. 22 (1987) 213.CrossRefGoogle Scholar
  17. 17.
    H. Iwahara, H. Uchida, K. Ogaki and H. Nagato, J. Electrochem. Soc. 138 (1991) 295.CrossRefGoogle Scholar
  18. 18.
    T. Yajima, H. Kazeoka, T. Yoga and H. Iwahara, Solid State Ionics 47 (1991) 271.CrossRefGoogle Scholar
  19. 19.
    R. L. Cook, J. J. Osborne, J. H. White, R. C. Macduff and A. F. Sammells, J. Electrochem. Soc. 139 (1992) L19.CrossRefGoogle Scholar
  20. 20.
    M. J. Scholten, J. Schoonman J. C. Van Miltenburg and H. A. J. Oonk, Solid State Ionics 61 (1993) 83.CrossRefGoogle Scholar
  21. 21.
    H. Iwahara, H. Uchida and S. Tanaka, ibid. 9/10 (1983) 1024.CrossRefGoogle Scholar
  22. 22.
    H. Uchida, N. Maeda and H. Iwahara, ibid. 11 (1983) 117.CrossRefGoogle Scholar
  23. 23.
    H.H. Huang, M. Ishigame and S. Shin, ibid. 47 (1991) 251.CrossRefGoogle Scholar
  24. 24.
    S. Hamakawa, T. Hibino and H. Iwahara, J. Electrochem. Soc. 140 (1993) 459.CrossRefGoogle Scholar
  25. 25.
    N. Taniguchi, K. Hatoh, J. Niikura and T. Gamo, Solid State Ionics 53–56 (1992) 998.CrossRefGoogle Scholar
  26. 26.
    J. A. Labrincha, J. R. Frade and F. M. B. Marques, ibid. 61 (1993) 71.CrossRefGoogle Scholar
  27. 27.
    Y. M. Kaikov and E. K. Sshalkova, J. Solid. State Chem. 97 (1992) 224.CrossRefGoogle Scholar
  28. 28.
    T. Yajima and H. Iwahara, Solid State Ionics 50 (1992) 281.CrossRefGoogle Scholar
  29. 29.
    F. M. B. Marques and G. P. Wirtz, J. Am. Ceram. Soc. 74 (1991) 598.CrossRefGoogle Scholar
  30. 30.
    T. Norby, O. Dyrlie and P. Kofstad, ibid. 75 (1992) 1176.CrossRefGoogle Scholar
  31. 31.
    T. Norby and P. Kofstad, ibid. 67 (1984) 786.CrossRefGoogle Scholar
  32. 32.
    Idem, ibid. 69 (1986) 784.CrossRefGoogle Scholar
  33. 33.
    M. P. van Dijk, K. J. De Vries and A. J. Burggraaf, Solid State Ionics 9/10 (1983) 913.CrossRefGoogle Scholar
  34. 34.
    N. G. Eror and U. Balachandran, J. Solid State Chem. 40 (1981) 85.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. A. Labrincha
    • 1
  • F. M. B. Marques
    • 1
  • J. R. Frade
    • 1
  1. 1.Departamento de Engenharia Cerâmica e do VidroUniversidade de AveiroAveiroPortugal

Personalised recommendations