Journal of Materials Science

, Volume 30, Issue 11, pp 2769–2784 | Cite as

Mechanical properties and microstructures of sol-gel derived ceramic-matrix composites

  • J. M. Chant
  • S. M. Bleay
  • B. Harris
  • R. Russell-Floyd
  • R. G. Cooke
  • V. D. Scott


A sol-gel process involving rapid freezing (“freeze gelation”) permits the fabrication of ceramic-matrix composite components at low sintering temperatures, to near-net shape and with low shrinkage. The effects of matrix composition and sintering temperature on the microstructures, mechanical properties and damage modes of sol-gel-silica/unidirectional carbon-fibre composites obtained by filament winding were explored. Matrix properties were modified by the incorporation of amorphous silica and glass-ceramic particles and amorphous silica and quartz particles into the colloidal silica sol. Flexural testing and scanning electron microscopy of fracture surfaces were used to determine mechanical properties and fracture mechanisms, whilst transmission and scanning electron microscopy, optical microscopy and X-ray diffraction were used to characterize the microstructures. A transition from a tough mode of fracture, involving appreciable fibre pull-out, to a brittle mode was observed when the sintering temperature was increased beyond 900 ° C. The brittleness was attributed to the formation of α-cristobalite whose high thermal expansion coefficient caused matrix cracking and fibre clamping. In one matrix system, α-cristobalite was formed in the amorphous silica filler particles, and in the other in the sol-gel matrix itself. A complex pattern of directional porosity, an artefact of the freeze gelation process, was found to influence the crack-growth behaviour during mechanical testing.


Sinter Temperature Amorphous Silica Colloidal Silica Damage Mode Quartz Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kelly and N. H. Macmillan, “Strong Solids”, 3rd Edn (Clarendon Press, Oxford, 1986).Google Scholar
  2. 2.
    M. Rühle and A. G. Evans, Progr. Mater. Sci. 33 (1989) 85.CrossRefGoogle Scholar
  3. 3.
    S. M. Wiederhorn, Ann. Rev. Mater. Sci. 14 (1984) 373.CrossRefGoogle Scholar
  4. 4.
    K. T. Faber, Ceram. Eng. Sci. Proc. 5 (1984) 408.CrossRefGoogle Scholar
  5. 5.
    R. A. Sambell, A. Briggs, D. C. Phillips and D. H. Bowen, J. Mater. Sci. 7 (1972) 676.CrossRefGoogle Scholar
  6. 6.
    J. A. Cornie, Y. M. Chiang, D. R. Uhlmann and A. Mortensen, Ceram. Bull. (Am. Ceram. Soc.) 65 (1986) 293.Google Scholar
  7. 7.
    J. R. Strife, J. J. Brennan and K. M. Prewo, Ceram. Eng. Sci. Proc. 11 (1990) 871.CrossRefGoogle Scholar
  8. 8.
    F. F. Lange, D. C. Lam, O. Sudre and B. D. Flinn, Mater. Sci. Eng. A144 (1991) 143.CrossRefGoogle Scholar
  9. 9.
    D. C. Phillips, Compos. Sci. Technol. 40 (1991) 17.Google Scholar
  10. 10.
    Ph. Colomban, Ceram. Int. 15 (1989) 23.CrossRefGoogle Scholar
  11. 11.
    R. S. Russell-Floyd, B. Harris, R. G. Cooke, J. Laurie, F. W. Hammett, R. W. Jones and T. W. Wang, J. Am. Ceram. Soc. 76 (1993) 2635.CrossRefGoogle Scholar
  12. 12.
    P.T.Curtis, “CRAG Test methods for the measurement of engineering properties of fibre reinforced plastics”, RAETR84102 (1984).Google Scholar
  13. 13.
    Z. Strnad, “Glass-Ceramic Materials” (Elsevier, Oxford, 1986).Google Scholar
  14. 14.
    J. M. Chant, unpublished work, University of Bath (1993).Google Scholar
  15. 15.
    C. Clark-Monks and J. M. Parker, “Stones and Cords in Glass” (Society of Glass Technology, Sheffield, 1980).Google Scholar
  16. 16.
    D. C. Phillips, R. A. Sambell and D. H. Bowen, J. Mater. Sci. 7 (1972) 1454.CrossRefGoogle Scholar
  17. 17.
    J. Aveston, G. A. Cooper and A. Kelly, in “Conference on the Properties of Fibre Composites”, NPL, Teddington (IPC Press, Guildford, 1971) p. 15.Google Scholar
  18. 18.
    D. C. Phillips and R. W. Davidge, Br. Ceram. Trans. J. 85 (1986) 123.Google Scholar
  19. 19.
    D. B. Marshall and A. G. Evans, J. Am. Ceram. Soc. 68 (1985) 225.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. M. Chant
    • 1
  • S. M. Bleay
    • 1
    • 2
  • B. Harris
    • 1
  • R. Russell-Floyd
    • 1
  • R. G. Cooke
    • 1
  • V. D. Scott
    • 1
  1. 1.School of Materials ScienceUniversity of BathClaverton DownUK
  2. 2.Structural Materials CentreDRAFarnboroughUK

Personalised recommendations