Journal of Materials Science

, Volume 30, Issue 11, pp 2759–2764 | Cite as

Synthesis and characterization of RuS2 nanocrystallites

  • M. Ashokkumar
  • A. Kudo
  • T. Sakata


RuS2 nanocrystallites were synthesized using a new technique, namely prolonged bubbling of H2S through a solution of RuCl3 in sulfolane and water at high temperatures. Optically transparent RuS2 colloidal particles could also be synthesized in hot sulfolane. Optical measurements of the RuS2 colloidal suspensions and powders showed a broad absorption in the visible spectral region, suggesting the suitability of this material for semiconductor sensitization experiments. The observed X-ray diffraction (XRD) data of the synthesized powder samples were in good agreement with the reported ASTM pattern of RuS2, confirming that RuS2 was the prepared compound by this new preparation technique. Scanning electron microscopic (SEM) pictures showed submicrometre sized crystallites. Heat treated powders of water prepared RuS2 showed < 50 nm particle sizes, and still smaller sizes were observed for the sulfolane prepared sample. Energy dispersive X-ray (EDX) analysis and X-ray fluorescence (XRF) measurements showed an Ru/S ratio of ∼ 1∶2 and also supported the XRD results.


Spectral Region Energy Dispersive Colloidal Particle Optical Measurement Broad Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Vogel, K. Pohl and H. Weller, Chem. Phys. Lett. 174 (1990) 241.CrossRefGoogle Scholar
  2. 2.
    M. V. Regi, V. Ragel, J. Roman, J. L. Martinez, M. Labeau and J. M. G. Calbet, J. Mater. Res. 8 (1993) 138.CrossRefGoogle Scholar
  3. 3.
    C. B. Murray, D. J. Norris and M. G. Bawendi, J. Amer. Chem. Soc. 115 (1993) 8706.CrossRefGoogle Scholar
  4. 4.
    Y. Nosaka, K. Tanaka, N. Fujii and R. Igarashi, J. Mater. Sci. 29 (1994) 376.CrossRefGoogle Scholar
  5. 5.
    T. Nakayama, J. Electrochem. Soc. 141 (1994) 237.CrossRefGoogle Scholar
  6. 6.
    Y. Santiago and C. R. Cabrera, ibid. 141 (1994) 629.CrossRefGoogle Scholar
  7. 7.
    K. Kameyama, K. Tsukada, K. Yahikozawa and Y. Takasu, ibid. 141 (1994) 643.CrossRefGoogle Scholar
  8. 8.
    Y. Hamasaki, S. Ohkubo, K. Murakami, H. Sei and G. Nogami, ibid. 141 (1994) 660.CrossRefGoogle Scholar
  9. 9.
    C. A. Estrada, P. K. Nair, M. T. S. Nair, R. A. Zingaro and E. A. Meyers, ibid. 141 (1994) 802.CrossRefGoogle Scholar
  10. 10.
    H. Yanagi, Y. Kanbayashi, D. Schlettwein, D. Wohrle and N. R. Armstrong, J. Phys. Chem. 98 (1994) 4760.CrossRefGoogle Scholar
  11. 11.
    A. Hasselbarth, A. Eychmuller, R. Eichberger, M. Giersig, A. Mews and H. Weller, ibid. 97 (1993) 5333.CrossRefGoogle Scholar
  12. 12.
    M. Ashokkumar and P. Maruthamuthu, J. Mater. Sci. 24 (1989) 2135.CrossRefGoogle Scholar
  13. 13.
    A. S. Baranski, W. R. Fawcett, A. C. McDonald, R. M. de Nobriga and J. R. McDonald, J. Electrochem. Soc. 128 (1981) 963.CrossRefGoogle Scholar
  14. 14.
    S. Kohtani, A. Kudo and T. Sakata, Chem. Phys. Lett. 206 (1993) 166.CrossRefGoogle Scholar
  15. 15.
    C. A. Koval and J. N. Howard, Chem. Rev. 92 (1992) 411.CrossRefGoogle Scholar
  16. 16.
    Y. Wang, A. Suna, J. McHugh, E. F. Hilinski, P. A. Lucas and R. D. Johnson, J. Chem. Phys. 92 (1990) 6927.CrossRefGoogle Scholar
  17. 17.
    I. Bedja, S. Hotchandani and P. V. Kamat, J. Phys. Chem. 98 (1994) 4133.CrossRefGoogle Scholar
  18. 18.
    A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel and H. Weller, J. Electrochem. Soc. 139 (1992) 2514.CrossRefGoogle Scholar
  19. 19.
    S. Piazza, H.-M. Kuhne and H. Tributsch, J. Electroanal. Chem. 196 (1985) 53.CrossRefGoogle Scholar
  20. 20.
    H. Ezzouia, R. Heindl, R. Parsons and H. Tributsch, ibid. 165 (1984) 155.CrossRefGoogle Scholar
  21. 21.
    H. -M. Kuhne and H. Tributsch, Ber. Bunsenges. Physik. Chem. 88 (1984) 10.CrossRefGoogle Scholar
  22. 22.
    N. A. Vante, H. Colell and H. Tributsch, J. Phys. Chem. 97 (1993) 8261 and other references therein.CrossRefGoogle Scholar
  23. 23.
    S. Fiechter and H.-M. Kuhne, J. Cryst. Growth 83 (1987) 517.CrossRefGoogle Scholar
  24. 24.
    R. Guittard, R. Heindl, R. Parsons, A. M. Redon and H. Tributsch, J. Electroanal. Chem. 111 (1980) 401.CrossRefGoogle Scholar
  25. 25.
    M. Ashokkumar, A. Kudo, N. Saito and T. Sakata, Chem. Phys. Lett. 229 (1994) 383.CrossRefGoogle Scholar
  26. 26.
    M. Ashokkumar, A. Kudo and T. Sakata Bull. Chem. Soc. Jpn (submitted).Google Scholar
  27. 27.
    S. R. Svendsen, Acta Chem. Scand. A 33 (1979) 601.CrossRefGoogle Scholar
  28. 28.
    R. Heindl, R. Parsons, A. M. Redon, H. Tributsch and J. Vigneron, Surf. Sci. 115 (1982) 91.CrossRefGoogle Scholar
  29. 29.
    JCPDS-ASTM Powder Diffraction File No. 19-1107, (JCPDS, PA, 1979) p. 345.Google Scholar
  30. 30.
    R. Vogel, P. Hoyer and H. Weller, J. Phys. Chem. 98 (1994) 3183.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Ashokkumar
    • 1
    • 2
  • A. Kudo
    • 1
  • T. Sakata
    • 1
  1. 1.Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyYokohamaJapan
  2. 2.JSPS fellow from Department of EnergyUniversity of MadrasIndia

Personalised recommendations