Advertisement

Journal of Materials Science

, Volume 30, Issue 11, pp 2747–2758 | Cite as

Comparison of beginning and ending microstructures in metal shaped charges as a means to explore mechanisms for plastic deformation at high rates

  • L. E. Murr
  • C. -S. Niou
  • J. C. Sanchez
  • H. K. Shih
  • L. Duplessis
  • S. Pappu
  • L. Zernow
Papers

Abstract

Optical metallography and transmission electron microscopy (TEM) observations were made of a variety of forged or sputtered copper, molybdenum, and tantalum shaped charge components. The beginning shaped charge liner grain sizes and sub-structures were compared with those observed in residual (ending), recovered and corresponding jet fragments and slugs. The wide range of microstructures and evolutionary features of observed microstructures can be characterized by low-energy dislocation structure (LEDS) principles which are altered because the shaped charge deformation corresponds to hot working, and dynamic recovery and recrystallization play a prominent role. There is a prominent relationship between the starting liner grain size, Do, and the ratio Do/Ds, where Ds is the ending (slug or jet), steady-state grain size. As a consequence of this relationship, it appears that the volumetric stored energy, which depends upon the grain size and dislocation density (or degree of deformation), is the critical issue in controlling shaped charge jet stability.

Keywords

Transmission Electron Microscopy Recrystallization Molybdenum Liner Dislocation Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. P. Walters and J. A. Zukas' “Fundamentals of shaped charges” (Wiley Interscience, New York, 1989).Google Scholar
  2. 2.
    M. L. Duffy and S. K. Golaski, “Effect of liner grain size on shaped charge jet performance and characteristics”, Technical Report BRL-TR-2800, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April, 1987.Google Scholar
  3. 3.
    A. C. Gurevitch, L. E. Murr, H. K. Shih, C.-S. Niou, A. H. Advani, D. Manuel, and L. Zernow, Materials Characterization 30 (1993) 201.CrossRefGoogle Scholar
  4. 4.
    L. E. Murr, H. K. Shih, C.-S. Niou, and L. Zernow, Scripta Metall et Materialia 29 (1993) 567.CrossRefGoogle Scholar
  5. 5.
    L. E. Murr, H. K. Shih and C.-S. Niou, Materials Characterization 33 (1994) 65.CrossRefGoogle Scholar
  6. 6.
    F. Jamet, “Investigation of shaped charge jets using flash X-ray diffraction”, Eighth Symposium on Ballistics, Orlando, FL, October, 1984.Google Scholar
  7. 7.
    F. Jamet and R. Charon, “A flash X-ray diffraction system for shaped charge jets analysis”, Report (0211/86) Franco-German Research Institute, Saint-Louis, France, May, 1986.Google Scholar
  8. 8.
    L. Zernow and L. Lowry, in “Shock-wave and high-strain-rate phenomena in materials”, edited by M. A. Meyers, L. E. Murr, and K. P. Staudhammer (Marcel Dekker, New York, 1992) Ch. 46.Google Scholar
  9. 9.
    D. Kuhlmann-Wilsdorf, Phys. State Sol. (a) 104 (1989) 1.Google Scholar
  10. 10.
    D. Kuhlmann-Wilsdorf, Materials Sci. Engr. A113 (1989) 1.Google Scholar
  11. 11.
    B. Bay, N. Hansen, D. A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall, et Materialia 40 (2) (1992) 205.CrossRefGoogle Scholar
  12. 12.
    L. E. Murr, C.-S. Niou, and C. Feng, Scripta Metall, et Materialia 31 (3) (1994) 297.CrossRefGoogle Scholar
  13. 13.
    D. Merz, Battelle-Pacific Northwest Laboratory (PNC), private communication, 1993; sputtered liners utilized in this research programme were processed by D. Merz.Google Scholar
  14. 14.
    A. H. Chokshi and M. A. Meyers, Scripta Metall, et Materialia 24 (1990) 605.CrossRefGoogle Scholar
  15. 15.
    R. Sandstrom and R. Lagneborg, Acta Metall. 23 (1975) 387.CrossRefGoogle Scholar
  16. 16.
    B. Derby and M. F. Ashby, Scripta Metall. 21 (1987) 879.CrossRefGoogle Scholar
  17. 17.
    T. Sakai and J. J. Jonas, Acta Metall. 32 (1984) 189.CrossRefGoogle Scholar
  18. 18.
    B. Derby, ibid. 39(5) (1991) 955.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • L. E. Murr
    • 1
  • C. -S. Niou
    • 1
  • J. C. Sanchez
    • 1
  • H. K. Shih
    • 1
  • L. Duplessis
    • 1
  • S. Pappu
    • 1
  • L. Zernow
    • 2
  1. 1.Department of Metallurgical and Materials Engineering and Materials Research InstituteThe University of Texas at El PasoEl PasoUSA
  2. 2.Zernow Technical Services Inc.San DimasUSA

Personalised recommendations