Journal of Materials Science

, Volume 30, Issue 11, pp 2743–2746 | Cite as

Optimization of superconducting critical temperatures by control of cation and anion stoichiometry in Bi2Sr2CaCu2Oδ-based solid solutions

  • D. C. Sinclair
  • J. T. S. Irvine
  • A. R. West


Tc data are reported for powders of cation-stoichiometric Bi2Sr2CaCu2Oδ and for nonstoichiometric samples based on the three mechanisms Bi⇄Sr, Sr⇄Ca and Sr vacancy. For each, the Tc values depend critically on the final oxygen contents, which were varied by heating samples in either O2 or N2 at different temperatures. Stoichiometric Bi2Sr2CaCu2Oδ has the highest Tc, 92 K, obtained after heating in O2 at ∼ 820 °C. Heating in O2 at lower temperatures gives rise to overdoping and Tc decreases to 60 K. The other cation compositions show a smaller maximum Tc but also less reduction in Tc on overdoping. Under-doped samples, with reduced Tc values were obtained on heating in N2. These data, together with selected literature results, lead to a unified picture of the variation of Tc with cation composition and oxygen content.


Oxygen Polymer Solid Solution Oxygen Content Critical Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Rice, N. Fukishima and K. Ando, Jpn. J. Appl. Phys. 27 (1988) L1442.CrossRefGoogle Scholar
  2. 2.
    M. Yoshida, ibid. 27 (1988) L2044.CrossRefGoogle Scholar
  3. 3.
    T. Ishida, ibid. 28 (1989) L573.CrossRefGoogle Scholar
  4. 4.
    I. Bloom, J. M. Frommelt and M. C. Hush, Mat. Res. Bull. 26 (1991) 1269.CrossRefGoogle Scholar
  5. 5.
    R. G. Buckley, J. L. Tallon, I. W. M. Brown, M. R. Preslund, N. E. Flower, P. W. Gilberd, M. Bowden and N. B. Milestone, Physica 156 (1988) 629.CrossRefGoogle Scholar
  6. 6.
    R. Muller, Th. Schweizer, P. Bohac, R. O. Suzuki and L. J. Gauckler, Physica C 203 (1992) 299.CrossRefGoogle Scholar
  7. 7.
    S. Golden, T. Bloomer, F. Lange, A. Seqadaes, K. J. Vaidya and A. K. Cheetham, J. Amer. Ceram. Soc. 74 (1991) 123.CrossRefGoogle Scholar
  8. 8.
    Y. Gao, P. Lee, P. Coppens, M. A. Subramanian and A. W. Sleight, Science 241 (1988) 954.CrossRefGoogle Scholar
  9. 9.
    K. Schultze, P. Majewski, B. Hettich and G. Petzow, Z. Metallkd 81 (1990) 836.Google Scholar
  10. 10.
    T. G. Holesinger, D. J. Miller, L. S. Chumbley, M. J. Kramer and K. W. Denis, Physica C 202 (1992) 109.CrossRefGoogle Scholar
  11. 11.
    P. Majewski, B. Hettich, N. Ruffer and F. Aldinger, J. Electron Mater. 22 (1993) 1259.CrossRefGoogle Scholar
  12. 12.
    R. Muller, T. Schweizer, P. Bohac and L. J. Gauckler, in Proceedings of the 3rd Conference of the European Ceramic Society, Madrid 1993, edited by P. Duran and J. F. Fernandez (London, Elsevier, 1993) p. 593.Google Scholar
  13. 13.
    T. Ishida, K. Koga, S. Nakamura, Y. Iye, K. Kanoda, S. Okui, T. Takahushi, T. Oashi and K. Kumagai, Physica C 176 (1991) 24.CrossRefGoogle Scholar
  14. 14.
    A. Q. Pham, M. Hervieu, A. Maignam, C. Michel, J. Provost and B. Raveau, ibid. 194 (1992) 243.CrossRefGoogle Scholar
  15. 15.
    M. Kato, K. Yoshimura and K. Kosuge, J. Solid State Chem. 106 (1993) 514.CrossRefGoogle Scholar
  16. 16.
    D. C. Sinclair, J. T. S. Irvine and A. R. West, J. Mater. Chem. 2 (1992) 579.CrossRefGoogle Scholar
  17. 17.
    B. Hong and T. O. Mason, J. Amer. Ceram. Soc. 74 (1991) 1045.CrossRefGoogle Scholar
  18. 18.
    Y. Deshimaru, T. Otani, Y. Shimizu, N. Miura and N. Yamazoe, Jpn. J. Appl. Phys. 30 (1989) L1798.CrossRefGoogle Scholar
  19. 19.
    G. Triscone, J. Y. Genoud, T. Graf, A. Junod and J. Muller, Physica C 176 (1991) 247.CrossRefGoogle Scholar
  20. 20.
    A. K. Sarkar and I. Maartense, ibid. 168 (1990) 591.CrossRefGoogle Scholar
  21. 21.
    M. Kato, W. Ito, Y. Koike, T. Noji and Y. Saito, ibid. 226 (1994) 243.CrossRefGoogle Scholar
  22. 22.
    C. Namgung, Ph.D. thesis, Aberdeen University. Aberdeen (1991).Google Scholar
  23. 23.
    I. Shigaki, K. Kitahama, K. Shibutani, S. Hayashi, R. Ogawa, Y. Kawate, T. Kawai, M. Matsumoto and J. Shirafuji, Jpn. J. Appl. Phys. 29 (1990) L2013.CrossRefGoogle Scholar
  24. 24.
    C. Namgung and J. T. S. Irvine, J. Solid State Chem. 87 (1990) 29.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. C. Sinclair
    • 1
  • J. T. S. Irvine
    • 1
  • A. R. West
    • 1
  1. 1.Department of ChemistryUniversity of AberdeenAberdeenUK

Personalised recommendations