Advertisement

Journal of Materials Science

, Volume 30, Issue 11, pp 2733–2737 | Cite as

Processing-induced resistive barriers in ZnO varistor material

  • D. C. Halls
  • C. Leach
Papers

Abstract

Evidence is presented for the origin of high-resistivity barriers at certain interfaces in high-field varistor materials. The barriers give rise to terrace contrast which can be observed using remote electron beam induced current imaging in the SEM. It is proposed that these interfaces, which are often associated with a thick intergranular layer of a compositionally distinct bismuth rich oxide, are relicts of the powder structure and correspond to agglomerate surfaces. It is suggested that the presence of these resistive surfaces ultimately limits the current that can flow at breakdown.

Keywords

Oxide Polymer Electron Beam Bismuth Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Matsuoka, Jpn J. Appl. Phys. 10 (1971) 736.CrossRefGoogle Scholar
  2. 2.
    L. M. Levinson and H. R. Phillip, Ceram. Bull. 65 (1986) 639.Google Scholar
  3. 3.
    G. S. Snow, S. Spencer White, R. A. Cooper and Armijo Rudy, J. Ceram. Bull. 59 (1980) 617.Google Scholar
  4. 4.
    H. R. Phillip and L. M. Levinson, J. Appl. Phys. 52 (1981) 1083.CrossRefGoogle Scholar
  5. 5.
    L. M. Levinson and H. R. Phillip, ibid. 46 (1975) 1332.CrossRefGoogle Scholar
  6. 6.
    T. K. Gupta, J. Mater. Res. 7 (1992) 3280.CrossRefGoogle Scholar
  7. 7.
    R. J. Lauf and W. D. Bond, Ceram. Bull. 63 (1984) 278.Google Scholar
  8. 8.
    S. K. Kim, H. H. Oh and C. K. Kim, Jpn. J. Appl. Phys. 30(B) (1991) 1917.CrossRefGoogle Scholar
  9. 9.
    L. O. Bubalek and W. E. Tennent, Appl. Phys. Lett. 52 (1988) 1255.CrossRefGoogle Scholar
  10. 10.
    J. D. Russell, D. Halls and C. Leach, J. Mater. Sci. Lett., in press.Google Scholar
  11. 11.
    A. Bernds, K. Loehnert and E. Kubalek, J. Phys. Coll. C2 (1984) 861.Google Scholar
  12. 12.
    D. B. Holt, Solid State Phenom. 37–38 (1994) 171.CrossRefGoogle Scholar
  13. 13.
    A. Al-Tounsi, R. Puyane and M. S. J. Hashmi, J. Mater. Proc. Technol. 37 (1993) 543.CrossRefGoogle Scholar
  14. 14.
    A. J. Moulson and J. M. Herbert, in “Electroceramics, Materials, properties, applications” (Chapman and Hall, London, 1990).Google Scholar
  15. 15.
    R. Einzinger, Appl. Surf. Sci. 1 (1978) 329.CrossRefGoogle Scholar
  16. 16.
    Ze-Chun Cao, Ru-Jun Wu and Run-Sheng Song, Mater. Sci. Eng. B22 (1994) 261.CrossRefGoogle Scholar
  17. 17.
    E. Olsson and G. L. Dunlop, J. Appl. Phys. 66 (1989) 3666.CrossRefGoogle Scholar
  18. 18.
    E. Olsson, G. Dunlop and R. Osterlund, J. Am. Ceram. Soc. 76 (1993) 65.CrossRefGoogle Scholar
  19. 19.
    U. Schwing and B. Hoffmann, J. Appl. Phys. 57 (1985) 5372.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. C. Halls
    • 1
  • C. Leach
    • 2
  1. 1.Department of MaterialsImperial College of Science, Technology and MedicineLondonUK
  2. 2.Manchester Materials Science CentreUniversity of Manchester and UMISTManchesterUK

Personalised recommendations