Advertisement

Humangenetik

, Volume 25, Issue 4, pp 315–329 | Cite as

Euchromatic and heterochromatic behavior of the human X2 chromosome in cell cycle and cell development

Original Investigations

Summary

The eu- and heterochromatic behavior of the late replicating X chromosome in the cell cycle was investigated with a double labeling method by means of H3- and C14-thymidine. It was ascertained that the X chromosome decondenses in retardation after mitosis and appears for a short time as sex chromatin. In cells with a sufficiently long cell cycle, a heterochromatization can occur again during interphase. In cells with a short cell cycle the X chromosome condenses only precociously before mitosis and becomes heterochromatic. Whereas the formation of the mitotic sex chromatin depends on the cell cycle, the interphasic sex chromatin is widely independent of the cell cycle. Examination of living fibroblasts with phase contrast microscopy confirms the results obtained by the double labeling method.

It is concluded from the autoradiographic replication pattern, the condensational behavior in prophase, and sex chromatin findings among X fragments, that the short arm of the X chromosome is euchromatic during interphase and that the interphasic sex chromatin is formed only by the long arm of the X chromosome.

It follows from the findings, which argue for and against the X inactivation, that the Lyon hypothesis (1962) should be modified by the following points: 1. The X chromosome is genetically active in the euchromatic condition. 2. The activity is of a regulative kind. 3. The differentiation into the early- and late-replicating X chromosome takes place not during embryogenesis, but already during the first cell division of the zygote. 4. The supplementary hypothesis of Lyon (1962) that single structural genes are on the X chromosomes or that structural gene activity occurs before “inactivation” cannot be correct.

Keywords

Cell Cycle Short Cell Replication Pattern Supplementary Hypothesis Double Label Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Mit einer Doppelmarkierungsmethode von H3- und C14-Thymidin wurde das eu- und heterochromatische Verhalten des spätreplizierenden X-Chromosoms im Zellcyclus untersucht. Es wurde festgestellt, daß das X-Chromosom nach der Mitose verzögert dekondensiert und für kurze Zeit als Geschlechtschromatin erscheint. In Zellen mit genügend langem Zellcyclus kann dann während der Interphase wieder eine Heterochromatisation erfolgen. In Zellen mit kurzem Zellcyclus kondensiert das X-Chromosom erst vor der Mitose vorzeitig und wird heterochromatisch. Während die Bildung des mitotischen Geschlechtschromatins vom Zellcyclus abhängt, ist die Entstehung des interphasischen Geschlechtschromatins vom Zellcyclus weitgehend unabhängig. Phasenkontrastuntersuchungen an lebenden Fibroblasten bestätigen im wesentlichen die Ergebnisse mit der Doppelmarkierungs-methode.

Aus dem autoradiographischen Repliktionsmuster, der chromosomalen Kondensation während der Prophase und Geschlechtschromatinbefunden bei X-Fragmenten wird geschlossen, daß der kurze Arm des X-Chromosoms während der Interphase euchromatisch ist und das interphasische Geschlechtschromatin nur vom langen Arm des X-chromosoms gebildet wird.

Aus den Befunden, welche für und gegen die X-Inaktivierung sprechen, ergibt sich, daß die Lyon-Hypothese (1962) in den folgenden Punkten modifiziert werden muß: 1. Das X-Chromosom ist im euchromatischen Zustand genetisch aktiv. 2. Die Aktivität ist regulativer Art. 3. Die Differenzierung in früh- und spätreplizierendes X-Chromosom tritt nicht erst während der Embryogenese ein, sondern schon während der ersten Zellteilung der Zygote. 4. Die Zusatzhypothesen von Lyon (1962), daß sich einzelne strukturelle Gene auf dem X-Chromosom befinden oder eine strukturelle Genaktivität vor der “Inaktivierung” besteht, können nicht stimmen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, M.: Contact inhibition: The phenomenon and its biological implication. J. nat. Cancer Inst. Monogr. 26, 249–277 (1967)Google Scholar
  2. Atkins, L., Santesson, B., Voss, H.: Partial deletion of an X chromosome. Ann. hum. Genet. 29, 89–95 (1965)CrossRefGoogle Scholar
  3. Back, F., Dörmer, P.: X-chromosome activity in lymphocytes. Lancet 1967 I, 385CrossRefGoogle Scholar
  4. Barr, M. L., Bertram, E. G.: A morphological distinction between neurones of the male and female, and the behaviour of the nuclear satellite during accelerated nucleoprotein synthesis. Nature (Lond.) 163, 676–677 (1949)CrossRefGoogle Scholar
  5. Baughman, F. A., Kolk, K. v. d., Mann, J. D., Valdmanis, A.: Two cases of primary amenorrhea with deletion of the long arm of the X chromosome (46 XXq-). Amer. J. Obstet. Gynec. 102, 1065–1069 (1965)CrossRefGoogle Scholar
  6. Becker, K. L., Paris, J., Albert, A.: Ovarian dysgenesis due to deletion of the X chromosome. Proc. Mayo Clin. 38, 389–394 (1963)Google Scholar
  7. Bianchi, N., Lima-de-Faria, A., Jaworska, H.: A technique for removing silver grains and gelatin from tritium autoradiographs of human chromosomes. Hereditas (Lund) 51, 207–211 (1964)CrossRefGoogle Scholar
  8. Comings, D. E.: Sex chromatin, nuclear size and the cell cycle. Cytogenetics 6, 120–144 (1967)CrossRefGoogle Scholar
  9. Court Brown, W. M., Harnden, D. C., Jacobs, P. A., Maclean, N., Mantle, D. J.: Abnormalities of the sex chromosome complement in man. Med. Res. Counc. Rep. No. 305 (London) (1964)Google Scholar
  10. de Grouchy, J., Lamy, M., Yaneva, H., Salomon, Y., Netter, A.: Further abnormalities of the X-chromosome in primary amenorrhea or in severe oligomenorrhea. Lancet 1961 II, 777–778Google Scholar
  11. De la Chapelle, A.: Cytogenetical and clinical observations in female gonadal dysgenesis. Acta endocr. (Kbh.) 40, Suppl. 65, 1–122 (1962)Google Scholar
  12. DeMars, R.: Sex chromatin formation during interphase of human fibroblasts. Science 146, 424 (1964)Google Scholar
  13. Engel, E., Forbes, A. P.: Cytogenetic and clinical findings in 48 patients with congenitally defective or absent ovaries. Medicine (Baltimore) 44, 135–164 (1965)CrossRefGoogle Scholar
  14. Ferguson-Smith, M. A., Alexander, D. S., Bowen, P., Goodman, R. M., Kaufmann, B. H., Jones, H. W., Heller, R. H.: Clinical and cytogenetical studies in female gonadal dysgenesis and their bearing on the cause of Turner's syndrome. Cytogenetics 3, 255–363 (1964)Google Scholar
  15. Fraccaro, M., Hanson, K., Lindsten, J., Tiepolo, L.: Heterochromatin in pre-implantation mouse embryos. Exp. Cell Res. 55, 427–430 (1969)CrossRefGoogle Scholar
  16. Fraccaro, M., Lindsten, J., Mittwoch, U., Zonta, L.: Size of drumsticks in patients with abnormalities of the X-chromosome. Lancet 1964 II, 43–44CrossRefGoogle Scholar
  17. Gavosto, F., Pegoraro, L., Rovera, G., Nasera, P.: Time sequence of DNA replication in heteropycnotic X. Nature (Lond.) 215, 535–536 (1967)CrossRefGoogle Scholar
  18. Gilbert, S. W., Muldal, S., Lathja, L. G., Rowley, J.: Time sequence of human chromosome duplication. Nature (Lond.) 195, 869–873 (1962)CrossRefGoogle Scholar
  19. Glenister, T. W.: Determination of sex in early human embryos. Nature (Lond.) 177, 1135 (1956)CrossRefGoogle Scholar
  20. Golob, E., Fischer, P., Künze-Mühl, E.: Morphologisch abnorme X-Chromosomen. Wien. med. Wschr. 92, 71–75 (1967)CrossRefGoogle Scholar
  21. Heitz, E.: Die Herkunft der Chromosomenzentren. Planta 18, 571–635 (1933)CrossRefGoogle Scholar
  22. Jacob, F., Monod, J.: On the regulation of gene activity. Cold Spr. Harb. Symp. quant. Biol. 26, 193–209 (1961)CrossRefGoogle Scholar
  23. Jacobs, P. A., Harnden, D. G., Buckton, K. K., Court Brown, W. M., King, M. J., McBride, J. A., MacGregor, T. N., Macleam, N.: Cytogenetic studies in primary amenorrhoea. Lancet 1961 I, 1183–1189Google Scholar
  24. Jacobs, P. A., Harnden, D. G., Court Brown, W. M., Goldstein, J., Close, H. G., MacGregor, T. N., Maclean, N., Strong, J. A.: Abnormalities involving the X chromosome in women. Lancet 1960 I, 1213–1216CrossRefGoogle Scholar
  25. Karl, H. J., Back, F., Macias-Alvarez, A., Raith, L.: Heterosomenfragmente bei der Gonadendysgenesie. Klin. Wschr. 45, 1225–1233 (1967)CrossRefGoogle Scholar
  26. Klinger, H. P., Davies, J., Goldhuber, P., Detta, T.: Factors influencing mammalian X chromosome condensation and sex chromatin formation. The effect of in vitro cell density on sex chromatin frequency. Cytogenetics 7, 39–57 (1968)CrossRefGoogle Scholar
  27. Klinger, H. P., Lindsten, J., Fraccaro, M., Barrai, J., Dolinar, Z. J.: DNA content and area of sex chromatin in subjects with structural and numerical aberrations of the X chromosome. Cytogenetics 4, 96–116 (1965)CrossRefGoogle Scholar
  28. Lejeune, J., Doumic, J. M., Berger, R., Rethoré, M. O.: Sur un cas de dysgénésie ovarienne XXdc. Ann. Génét. 9, 132–133 (1966)PubMedGoogle Scholar
  29. Lenz, W.: Medizinische-Genetik. Stuttgart: Thieme 1970Google Scholar
  30. Lindsten, J.: The nature and origin of X chromosome aberrations in Turner's syndrome. A cytogenetical and clinical study of 57 patients. Stockholm: Almquist and Wiksell 1963Google Scholar
  31. Lyon, M. F.: Gene action in the X chromosome of the mouse (Mus musculus L.). Nature (Lond.) 190, 372–373 (1961)CrossRefGoogle Scholar
  32. Lyon, M. F.: Sex chromatin and gene action in the mammalian X chromosome. Amer. J. hum. Genet. 14, 135–148 (1962)PubMedGoogle Scholar
  33. Lyon, M. F.: Chromosomal and subchromsomal inactivation. Ann. Rev. Genet. 2, 31–52 (1968)CrossRefGoogle Scholar
  34. Maclean, N.: The drumsticks of polymorphonuclear leucocytes in sex chromosome abnormalities. Lancet 1962 I, 1154–1158CrossRefGoogle Scholar
  35. Mittwoch, U.: Barr bodies in relation to DNA value and nuclear size in cultured human cells. Cytogenetics 6, 17–38 (1967)CrossRefGoogle Scholar
  36. Neuhäuser, G., Back, F.: Cytogenetische Varianten des Ulrich-Turner-Syndroms. Med. Klin. 63, 836–841 (1968)PubMedGoogle Scholar
  37. Ohno, S., Makino, S.: The single X-nature of sex chromatin in man. Lancet 1961 I, 78–79CrossRefGoogle Scholar
  38. Park, W. W.: The occurrence of sex chromatin in early human and macaque embryos. J. Anat. 91, 369–373 (1957)PubMedPubMedCentralGoogle Scholar
  39. Roberts, D. C., Trevan, P. J.: A reversatile microscope chamber for the study of the effect of environmental changes in living cells. J. roy. micr. Soc. 79, 361–366 (1961)CrossRefGoogle Scholar
  40. Schmid, W.: Autoradiography of human chromosomes. In: Human chromosome methodology (ed., J. J. Yunis), pp. 91–110. New York: Academic Press 1965CrossRefGoogle Scholar
  41. Schnedl, W.: Sexchromatin und Kerngröße im Zellzyklus. Chromsoma (Berl.) 27, 421–435 (1969)CrossRefGoogle Scholar
  42. Schwarzacher, H. G.: Sex chromatin in living human cells in vitro. Cytogenetics 2, 117–128 (1963)CrossRefGoogle Scholar
  43. Schwarzacher, H. G., Pera, F.: Das Problem der sexchromatin-negativen Zellen. Z. Anat. Entwickl.-Gesch. 132, 18–33 (1970)CrossRefGoogle Scholar
  44. Sieger, M., Pera, F., Schwarzacher, H. G.: Genetic activity of heterochromatin and heteropycnosis in Microtus agrestis. Chromosoma (Berl.) 29, 349–364 (1970)CrossRefGoogle Scholar
  45. Singh, R. P., Carr, D. H.: The anatomy and histology of X0 human embryos and fetuses. Anat. Rec. 155, 369–384 (1966)CrossRefGoogle Scholar
  46. Steinberger, W. A., Smith, K. D., Perloff, W. H.: Apparent deletion of X chromosome on propuberal girl. J. med. Genet. 3, 226–229 (1966)CrossRefGoogle Scholar
  47. Taft, P. D., Dalal, K. D., McArthur, W. J., Worcester, J.: Sex chromatin body size and its relation to X-chromosome structure. Cytogenetics 4, 87–95 (1965)CrossRefGoogle Scholar
  48. Therkelsen, A. J., Lamm, L. U.: Difference in the frequency of sex chromatin positive cells in the different intermitotic phases of human cells in tissue culture. Exp. Cell Res. 44, 636–640 (1967)CrossRefGoogle Scholar
  49. Therkelsen, A. J., Petersen, G. B.: Variation in glucose-6-phosphate dehydrogenase in relation to the growth phase and frequency of sex chromatin positive cells in cultures of fibroblasts from normal human females and a XXXXY males. Exp. Cell Res. 48, 681–684 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • F. Back
    • 1
  1. 1.Institut für Humangenetik der Universität GöttingenGottingenGermany

Personalised recommendations