Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Supranucleosomal organization of chromatin

Electron microscopic visualization of long polynucleosomal chains

  • 34 Accesses

  • 26 Citations


A systematic study of the effect of different ionic conditions on the morphology of the 25–30 nm chromatin fiber from chicken erythrocytes has revealed that, as the ionic strength is increased, knobby fibers with a clear superbead structure are formed in the presence of either Mg++ or Na+, or both. A further increase in ionic strength results in smooth chromatin fibers due to a tight packing of superbeads. Cross-linking such fibers with formaldehyde and reversal of the ionic conditions, demonstrates the superbead structures underlying the smooth fibers observed at high ionic concentrations. The average size of the superbeads is 34 nm along the length of the fibers, in agreement with the value found in embedded sea cucumber chromatin. A second class of superbeads has an average length of 25 nm and probably corresponds to partially disrupted structures.

This is a preview of subscription content, log in to check access.


  1. Azorín, F., Martínez, A.B., Subirana, J.A.: Organization of nucleosomes and spacer DNA in chromatin fibers. Int. J. Biol. Macromol. 2, 81–92 (1980)

  2. Bustin, M., Goldblatt, D., Sperling, R.: Chromatin structure visualization by immunoelectron microscopy. Cell 7, 297–304 (1976)

  3. Finch, J.T., Klug, A.: Solenoidal model for superstructure in chromatin. Proc. nat. Acad. Sci. (Wash.) 73, 1897–1901 (1976)

  4. Finch, J.T., Noll, M., Kornberg, R.D.: Electron microscopy of defined lengths of chromatin. Proc. nat. Acad. Sci. (Wash.) 72, 3320–3322 (1975)

  5. Gall, J.G.: Chromosome fibers studied by a spreading technique. Chromosoma (Berl.) 20, 221–233 (1966)

  6. Griffith, J.D.: Chromatin structure: deduced from a minichromosome. Science 187, 1202–1203 (1975)

  7. Hozier, J., Renz, M., Nehls, P.: The chromosome fiber: evidence for an ordered superstructure of nuleolosomes. Chromosoma (Berl.) 62, 301–317 (1977)

  8. Itkes, A.V., Glotov, B.O., Nikolaev, L.G., Preem, S.R., Severin, E.S.: Repeating oligonucleosomal units. A new element of chromatin structure. Nucleic Acids Res. 8, 507–527 (1980)

  9. Jorcano, J.L., Meyer, G., Day, L.A., Renz, M.: Aggregation of small oligonucleosomal chains into 300-Å globular particles. Proc. nat. Acad. Sci. (Wash.) 77, 6443–6447 (1980)

  10. Loening, V.E.: The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide gel electrophoresis. Biochem. J. 102, 251–257 (1967)

  11. Noll, M., Thomas, J.O., Kornberg, R.D.: Preparation of native chromatin and damage caused by shearing. Science 187, 1203–1206 (1975)

  12. Olins, A.L., Carlson, R.D., Wright, E.B., Olins, D.E.: Chromatin ν bodies: isolation, subfractionation and physical characterization. Nucleic Acids Res. 3, 3271–3291 (1976)

  13. Pruitt, S.C., Grainger, R.M.: A repeating unit of higher order chromatin structure in chick red blood cell nuclei. Chromosoma (Berl.) 78, 257–274 (1980)

  14. Renz, M.: Heterogeneity of the chromosome fiber. Nucleic Acids Res. 6, 2761–2767 (1979)

  15. Renz, M., Nehls, P., Hozier, J.: Involvement of histone H1 in the organization of the chromosome fiber. Proc. nat. Acad. Sci. (Wash.) 74, 1879–1883 (1977)

  16. Ris, H., Kubai, D.F.: Chromosome structure. Ann. Rev. Genet. 4, 263–294 (1970)

  17. Stratling, W.H., Müller, U., Zentgraf, H.: The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes. Exp. Cell Res. 117, 301–311 (1978)

  18. Subirana, J.A., Muñoz-Guerra, S., Martínez, A.G., Pérez-Grau, L., Marcet, X., Fita, I.: The subunit structure of chromatin fibers. Chromosoma (Berl.) 83, 455–471 (1981)

  19. Thoma, F., Koller, Th., Klug, A.: Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427 (1979)

  20. Thomas, J.O., Kornberg, R.D.: The study of Histone-Histone associations by chemical cross-linking. In: Methods in cell biology (G. Stein, J. Stein and L.J. Kleinsmith, eds.), vol. XVIII, pp. 429–440. New York: Academic Press, 1978

  21. Zamenhoff, S.: Preparation and assay of deoxyribonucleic acid from animal tissue. In: Methods in enzymology (S.P. Colawick and N.O. Kaplan, eds.), vol. 3, pp. 696–704. New York: Academic Press 1957

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Azorín, F., Pérez-Grau, L. & Subirana, J.A. Supranucleosomal organization of chromatin. Chromosoma 85, 251–260 (1982).

Download citation


  • Formaldehyde
  • Ionic Strength
  • Ionic Concentration
  • Developmental Biology
  • Systematic Study