Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Metabolism of chloroguaiacols by Rhodococcus chlorophenolicus

  • 46 Accesses

  • 20 Citations

Summary

A polychlorophenol degrader, Rhodococcus chlorophenolicus, was shown to metabolize five different chlorinated guaiacols, namely tetrachloroguaiacol, 3,4,6-trichloroguaiacol, 3,5,6-trichloroguaiacol, 3,5-dichloroguaiacol and 3,6-dichloroguaiacol. Seven different intermediate metabolites, each with three hydroxyl or methoxyl groups, were identified. Four of these metabolites were also dehalogenation products, three carrying one chlorine atom less than the parent compound, and one metabolite from tetrachloroguaiacol where two chlorine atoms had been removed. Tetrachloroguaiacol was shown to undergo reductive dehalogenation. Demethylation of guaiacol to catechol was observed with the dichloroguaiacols, but not with polychloroguaiacols.

This is a preview of subscription content, log in to check access.

Abbreviations

DCG:

dichloroguaiacol

TCG:

trichloroguaiacol

TeCG:

tetrachloroguaiacol

DCC:

dichlorocatechol

TCC:

trichlorocatechol

TeCC:

tetrachlorocatechol

TCP:

trichlorophenol

TeCP:

tetrachlorophenol

PCP:

pentachlorophenol. An example of numeration

346-TCG:

3,4,6-trichloroguaiacol

GLC:

gas liquid chromatography

References

  1. Allard A-S, Remberger M, Neilson AH (1985) Bacterial O-methylation of chloroguaiacols: effect of substrate concentration, cell density, and growth conditions. Appl Environ Microbiol 49:279–288

  2. Apajalahti JHA, Salkinoja-Salonen MS (1984) Absorption of pentachlorophenol (PCP) by bark chips and its role in microbial PCP degradation. Microbial Ecology 10:359–367

  3. Apajalahti JHA, Kärpänoja P, Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. Int J Syst Bacteriol 36:246–251

  4. Apajalahti JAH, Salkinoja-Salonen MS (1986) Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl Microbiol Biotechnol, in press

  5. Bauchop T, Elsden SR (1960) The growth of microorganisms in relation to their energy supply. J Gen Microbiol 23:457–469

  6. Chu I, Ritter L, Marino IA, Yagmanis AP, Villeneuve DC (1979a) Toxicity studies on chlorinated guaiacols in the rat. Bull Environm Contam Toxicol 22:293–296

  7. Chu I, Villeneuve DC, Yagminas AP, Valli VE (1979b) Triand tetrachloroguaiacol: results of a three and six-month feeding study in rats. Arch Environm Contam Toxicol 8:589–597

  8. Eriksson K-E, Kolar M-C, Ljungquist PO, Kringstad KP (1985) Studies on Microbial and Chemical Conversions of Chlorolignins. Environ Sci Technol 19:1219–1224

  9. Hakulinen R, Salkinoja-Salonen M (1981) An anaerobic fluidised-bed reactor for the treatment of industrial wastewater containing chlorophenols. In Cooper PF, Atkinson B (eds) Biological fluidised bed treatment of water and wastewater. Ellis Horwood Publ, Chichester, UK, pp 374–382

  10. Hakulinen R, Salkinoja-Salonen M (1982a) Treatment of pulp and paper industry wastewaters in an anaerobic fluidised bed reactor. Process Biochemistry 17 (2):18–22

  11. Hakulinen R, Salkinoja-Salonen M (1982b) Treatment of kraft bleaching effluents: comparison of results obtained by Enso-Fenox and alternative methods. Proc of TAPPI Int Pulp Bleaching Conf, Tappi Press, Atlanta, Ga, pp 97–106

  12. Hakulinen R, Salkinoja-Salonen MS, Saxelin ML (1981) Purification of kraft bleaching effluent by an anaerobic fluidised bed reactor and aerobic trickling filter at semitechnical scale (Enso-Fenox) Proc TAPPI Environm Conf, New Orleans April 27–29, Tappi Press, Atlanta, Ga, pp 197–203

  13. Horowitz A, Suflita JM, Tiedje JM (1983) Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl Environ Microbiol 45:1459–1465

  14. Kirkpatrick D, Biggs SR, Conway B, Finn CM, Hawkins DR, Honda T, Ishida M, Powell GP (1981) Metabolism of N-(2,3-dichlorophenyl)-3,4,5,6-tetrachlorophthalamic acid (Techloftalam) in paddy soil and rice. J Agric Food Chem 29:1149–1153

  15. Knuutinen J (1984) Synthesis, structure verification and gas chromatographic determination of chlorinated catechols and guaiacols occurring in spent bleach liquors of kraft pulp mills. Ph. D. Thesis, Department of Chemistry, University of Jyväskylä. Research report No. 18

  16. Kovacs TG, Voss RH, Wong A (1984) Chlorinated phenolics of bleached kraft mill origin. Water Res 18:911–916

  17. Landner L, Lindström K, Karlsson M, Nordin J, Sörensen L (1977) Bioaccumulation in fish of chlorinated phenols from kraft pulp in mill bleachery effluents. Bull Environm Contamin Toxicol 18:663–673

  18. Leach JM, Thakore AN (1975) Isolation and identification of constituents toxic to juvenile rainbow trout (Salmo gairdneri) in caustic extraction effluents from kraft pulpmill bleach plants. J Fish Res Board Can 32:1249–1257

  19. Lindström K, Nordin J (1976) Gas chromatography-mass spectrometry of chlorophenols in spent bleach liquors. J Chromatogr 128:13–26

  20. Lundberg P, Renberg L, Arrhenius E, Sundström G (1980) Detoxification disturbances and uncoupling effects in vitro of some chlorinated guaiacols, catechols and benzoquinones. Chem-Biol Interactions 32:281–290

  21. Neilson AH, Allard A-S, Hynning P-Å, Remberger M, Landner L (1983) Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin. Appl Environ Microbiol 45:774–783

  22. Neilson AH, Allard A-S, Reiland S, Remberger M, Tärnholm A, Viktor T, Landner L (1984) Tri- and Tetra-chloroveratrole, metabolites produced by bacterial O-methylation of tri- and tetra-chloroguaiacol: an assessment of their bioconcentration potential and their effects on fish reproduction. Can J Fish Aquat Sci 41:1502–1512

  23. Paasivirta J, Heinola K, Humppi T, Karjalainen A, Knuutinen J, Mäntykoski K, Paukku R, Piipola T, Surma-Aho K, Tarhanen J, Welling L, Vihonen H (1985) Polychlorinated phenols, guaiacols and catechols in environment. Chemosphere 14:469–491

  24. Renberg L, Svanberg O, Bengtsson B-E, Sundström G (1980) Chlorinated guaiacols and catechols bioaccumulation potential in bleaks (Alburnus alburnus, Pisces) and reproductive toxic effects on the harpacticoid Nitocra spinipes (Crustacea). Chemosphere 9:143–150

  25. Salkinoja-Salonen MS, Apajalahti J (1982) Studies on microbial degradation of pentachlorophenol and 2,3,7,8-tetrachlorodibenzo-p-dioxin. U. S. Environmental Protection Agency, IERL Report on project no 68-03-2936, Cincinnati, Ohio

  26. Salkinoja-Salonen M, Paasivuo R, Hakulinen R, Koistinen O (1980) A new method for biological treatment of chlorophenol-containing industrial effluent. In: Behrens D (ed) Aktuelle Probleme der Luftreinhaltung und ihre Lösungs wege, Verlag Chemie, Weinheim, Germany, pp 349–359

  27. Salkinoja-Salonen M, Saxelin M-L, Pere J, Jaakkola T, Saarikoski J, Hakulinen R, Koistinen O (1981) Analysis of toxicity and biodegradability of organochlorine compounds released into the environment in bleaching effluents of kraft pulping. In Keith LH (ed) Advances in the identification and analysis of organic pollutants in water, vol 2. Ann Arbor, MI, pp 1131–1164

  28. Salkinoja-Salonen MS, Hakulinen R, Valo R, Apajalahti J (1983) Biodegradation of recalcitrant organochlorine compounds in fixed film reactors. Wat Sci Tech 15:309–319

  29. Salkinoja-Salonen MS, Valo R, Apajalahti J, Hakulinen R, Silakoski L, Jaakkola T (1984) Biodegradation of chlorophenolic compounds in wastes from wood-processing industry. In Klug MJ, Reddy CA (eds) Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington DC, pp 668–676

  30. Schlenk H, Gellerman IH (1960) Esterification of fatty acids with diazomethane on a small scale. Anal Chem 32:1412–1414

  31. Suflita JM, Robinson JA, Tiedje JM (1983) Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl Environ Microbiol 45:1466–1473

  32. Sundman V (1964) The ability of α-conidendrin decomposing Agrobacterium strains to utilize other lignans and lignin-related compounds. J Gen Microbiol 36:185–201

  33. Valo R, Apajalahti J, Salkinoja-Salonen M (1985) Studies on the physiology of microbial degradation of pentachlorophenol. Appl Microbiol Biotechnol 21:313–319

  34. Voss RH, Wearing JT, Mortimer RD, Kovacs T, Wong A (1980) Chlorinated organics in kraft bleachery effluents. Pap Puu 12:809–814

  35. Xie T-M, Hulthe B, Folestad S (1984) Determination of partition coefficients of chlorinated phenols, guaiacols and catechols by shake-flask and HPLC. Chemosphere 13:445–460

Download references

Author information

Correspondence to Max Häggblom.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Häggblom, M., Apajalahti, J. & Salkinoja-Salonen, M. Metabolism of chloroguaiacols by Rhodococcus chlorophenolicus . Appl Microbiol Biotechnol 24, 397–404 (1986). https://doi.org/10.1007/BF00294597

Download citation

Keywords

  • Hydroxyl
  • Chlorine
  • Catechol
  • Parent Compound
  • Chlorine Atom