Archives of Microbiology

, Volume 156, Issue 2, pp 145–147 | Cite as

Determination of the transmembrane proton gradient in the anaerobic bacterium Desulfovibrio desulfuricans by 31P nuclear magnetic resonance

  • Michael Kroder
  • Peter M. H. Kroneck
  • Heribert Cypionka
Original Papers


The transmembrane proton gradient of the sulfate-reducing bacterium Desulfovibrio desulfuricans strain CSN has been determined by in vivo31P nuclear magnetic resonance (NMR) spectroscopy in the absence of dioxygen. At pH 7.0 in the medium (pHex) the intracellular pH (pHin) was 7.5. By lowering pHex to 5.9 pHin decreased to 7.1. At pHex greater than 7.7 the transmembrane proton gradient (ΔpH) was zero. The uncouplers 3,3′,4′,5-tetrachlorosalicylanilide (TCS) and carbonylcyanide-m-chlorophenylhydrazone (CCCP), or the permeant anion thiocyanate caused complete dissipation of ΔpH.

Key words

Transmembrane proton gradient Desulfovibrio desulfuricans CSN 31P NMR Cytoplasmic pH 







3-(N-morpholino)-propanesulfonic acid


inorganic phosphate

pHin (pHex)

intracellular (extracellular) pH


transmembrane proton gradient (pHin-pHex)


electrochemical membrane potential


chemical shift in parts per million


nuclear magnetic resonance


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burt C, Cohen S, Barany M (1979) Analysis of intact tissue with 31P NMR. Annu Rev Biophys Bioeng 8: 1–25CrossRefGoogle Scholar
  2. Cotton FA, Wilkinson G (1982) Anorganische Chemie. Verlag Chemie, Weinheim, p 483Google Scholar
  3. Dawson M, Gadian D, Wilkie D (1977) Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance. J Physiol 267: 703–735CrossRefGoogle Scholar
  4. Cypionka H (1989) Characterization of sulfate transport in Desulfovibrio desulfuricans. Arch Microbiol 152: 237–243CrossRefGoogle Scholar
  5. Cypionka H, Pfennig N (1986) Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143: 396–399CrossRefGoogle Scholar
  6. Nicolay K, Kaptein R, Hellingwerf KJ, Konings W (1981) 31P Nuclear magnetic resonance studies of energy transduction in Rhodopseudomonas sphaeroides. Eur J Biochem 116: 191–197CrossRefGoogle Scholar
  7. Padan E, Zilberstein D, Schuldiner S (1981) pH homeostasis in bacteria. Biochim Biophys Acta 650: 151–166CrossRefGoogle Scholar
  8. Roberts J, Jardetzky O (1981) Monitoring of cellular metabolism by NMR. Biochim Biophys Acta 639: 53–76CrossRefGoogle Scholar
  9. Rottenberg H (1975) The measurement of transmembrane electrochemical proton gradients. Bioenerg 7: 61–74CrossRefGoogle Scholar
  10. Schmidt K, Liaaen-Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium vinosum Perty. Arch Mikrobiol 46: 117–126CrossRefGoogle Scholar
  11. Slonczewski J, Rosen B, Alger J, MacNab M (1981) pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci USA 78: 6271–6275CrossRefGoogle Scholar
  12. Thauer RK (1989) Energy metabolism of sulfate-reducing bacteria. In: Autotrophic bacteria. Schlegel HG, Bowien B (eds) Springer, Berlin Heidelberg New York, pp 397–413Google Scholar
  13. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137: 163–167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Michael Kroder
    • 1
  • Peter M. H. Kroneck
    • 1
  • Heribert Cypionka
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations