Archives of Microbiology

, Volume 156, Issue 2, pp 119–128 | Cite as

Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes

  • M. Bokranz
  • M. Gutmann
  • C. Körtner
  • E. Kojro
  • F. Fahrenholz
  • F. Lauterbach
  • A. Kröger
Original Papers


The formate dehydrogenase of Wolinella succinogenes is a membraneous molybdo-enzyme which is involved in phosphorylative electron transport. The gene (fdhA) encoding the largest subunit was isolated from a gene bank by immunological screening. The fdhA gene was located in an apparent transcriptional unit (fdh A, B, C. D) together with three more structural genes. The N-terminal sequences of three polypeptides present in the isolated enzyme were found to map within the fdhA, B and C structural genes. A polypeptide corresponding to fdhD was not detected in the enzyme preparation. This suggested that the functional formate dehydrogenase was made up of three or four different subunits.

The genes fdhA and C encode larger preproteins which differ from the corresponding mature proteins by N-terminal signal peptides. The N-terminal half of the mature FdhA is homologous to the larger subunits of the formate dehydrogenases of E. coli (formate-hydrogenlyase linked) and Methanobacterium formicicum as well as to three bacterial reductases containing molybdenum. It harbours a conserved cysteine cluster and two more domains which may be involved in binding the molybdenum cofactor. FdhB may represent an iron-sulphur protein, twelve cysteine residues of which are arranged in two clusters which are typical of ligands of the iron-sulfur centers in ferredoxins. FdhC is a hydrophobic protein with four predicted transmembrane segments, which appears to be identical with the cytochrome b present in the isolated formate dehydrogenase. It may form the membrane anchor of the enzyme and react with the bacterial menaquinone.

Key words

Formate dehydrogenase Wolinella succinogenes Molybdoenzymes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adman ET, Sieker LC, Jensen LH (1973) The structure of a bacterial ferredoxin. J Biol Chem 248:3987–3996PubMedGoogle Scholar
  2. Alting-Mees MA, Short JM (1989) pBluescriptII: gene mapping vectors. Nucleic Acids Res 17: 9494CrossRefGoogle Scholar
  3. Bilous PT, Cole ST, Anderson WF, Weiner JH (1988) Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulfoxide reductase of Escherichia coli. Mol Microbiol 2:785–795CrossRefGoogle Scholar
  4. Blasco F, Iobbi C, Giordano G, Chippaux M, Bonnefoy V (1989) Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer. Mol Gen Genet 218:249–256CrossRefGoogle Scholar
  5. Böhm R, Sauter M, Böck A (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4: 231–243CrossRefGoogle Scholar
  6. Bray RC (1975) Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: Boyer PD (ed) The Enzymes. Vol 12B: 299–419, Academic Press, New YorkCrossRefGoogle Scholar
  7. Bruschi M, Guerlesquin F (1988) Structure, function and evolution of bacterial ferredoxins. FEBS Microbiol Rev 54:155–176Google Scholar
  8. Droß F (1990) Die Hydrogenase-Gene von Wolinella succinogenes. Doctoral Thesis, J. W. Goethe-Universität Frankfurt am Main.Google Scholar
  9. Ford CM, Garg N, Garg RP, Tibelius KH, Yates MG, Arp DJ, Seefeldt LC (1990) The identification, characterization, sequencing and mutagenesis of the genes (hup SL) encoding the small and large subunits of the H2-uptake hydrogenase of Azotobacter chroococcum. Mol Microbiol 4:999–1008CrossRefGoogle Scholar
  10. Frischauf A, Lehrbach H, Poustka A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842CrossRefGoogle Scholar
  11. Hauska G, Nitschke W, Herrmann RG (1988) Amino acid identities in the three redox center carrying polypeptides of cytochrome bc1/b6f complexes. J Bioenerg Biomembr 20:211–228CrossRefGoogle Scholar
  12. Hawkes R, Niday E, Gordon J (1982) A dot immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142–147CrossRefGoogle Scholar
  13. Henikoff S (1987) Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol 155:156–165CrossRefGoogle Scholar
  14. Hohn B (1979) In vitro packaging of lambda and cosmid DNA. Methods Enzymol 68:299–309CrossRefGoogle Scholar
  15. Johnson JL, Bastian NR, Rajagopalan KV (1990) Molybdopterin guanine dinucleotide: A modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans. Proc Natl Acad Sci USA 87:3190–3194CrossRefGoogle Scholar
  16. Kaiser K, Murray NE (1979) Physical characterisation of the “Rac prophage” in E. coli K12. Mol Gen Genet 175:159–174CrossRefGoogle Scholar
  17. Karn J, Brenner S, Barnett L, Cesarini G (1980) Novel bacteriophage lambda cloning vector. Proc Natl Acad Sci USA 77:5172–5176CrossRefGoogle Scholar
  18. Körtner C, Lauterbach F, Tripier D, Unden G, Kröger A (1990) Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol Microbiol 4:855–860CrossRefGoogle Scholar
  19. Kröger A, Winkler E (1981) Phosphorylative fumarate reduction in Vibrio succinogenes: Stoichiometry of ATP synthesis. Arch Microbiol 129:100–104CrossRefGoogle Scholar
  20. Kröger A, Winkler E, Innerhofer A, Hackenberg H, Schägger H (1979) The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur J Biochem 94:465–475CrossRefGoogle Scholar
  21. Kröger A, Dorrer E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589:118–136CrossRefGoogle Scholar
  22. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209CrossRefGoogle Scholar
  23. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefGoogle Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685CrossRefGoogle Scholar
  25. Lauterbach F, Körtner C, Tripier D, Unden G (1987) Cloning and expression of the genes of two fumarate reductase subunits from Wolinella succinogenes. Eur J Biochem 166:447–452CrossRefGoogle Scholar
  26. Lauterbach F, Körtner C, Albracht SPJ, Unden G, Kröger A (1990) The fumarate reductase of Wolinella succinogenes: sequence and expression of the frdA and frdB genes. Arch Microbiol 154:386–393CrossRefGoogle Scholar
  27. Magnusson K, Philipps MK, Guest JR, Rutberg L (1986) Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex. J Bacteriol 166: 1067–1071CrossRefGoogle Scholar
  28. Menon NK, Robbins J, Peck HD, Chatelus CY, Choi E, Przybyla AE (1990) Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames. J Bacteriol 172:1969–1977CrossRefGoogle Scholar
  29. Michel H, Weyer KA, Gruenberg H, Dunger I, Oesterhelt D, Lottspeich F (1986) The light- and medium-subunit of the photosynthetic reaction center from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J 5:1149–1158CrossRefGoogle Scholar
  30. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  31. Murakami H, Kita K, Qya H, Anraku Y (1985) The Escherichia coli cytochrome b556 gene, cybA is assignable as sdhC in the succinate dehydrogenase gene cluster. FEMS Microbiol Lett 30:307–311CrossRefGoogle Scholar
  32. Oliver DB (1987) Periplasm and protein secretion. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium, American Society for Microbiology, Washington, DC, pp 56–69Google Scholar
  33. Pierson D, Campbell A (1990) Cloning and nucleotide sequence of bisC, the structural gene for biotinsulfoxide reductase in Escherichia coli. J Bacteriol 172: 2194–2198CrossRefGoogle Scholar
  34. Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353CrossRefGoogle Scholar
  35. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  36. Sanger F, Nickeln S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefGoogle Scholar
  37. Shuber AP, Orr EC, Recny MA, Schendel PF, May HD, Schauer NL, Ferry JG (1986) Cloning, expression and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J Biol Chem 261:12942–12947PubMedGoogle Scholar
  38. Södergren EJ, DeMoss JA (1988) NarI region of the Escherichia coli nitrate reductase nar operon contains two genes. J Bacteriol 170:1721–1729CrossRefGoogle Scholar
  39. Spindler KR, Rosser DSE, Berk AJ (1984) Analysis of adenovirus transforming proteins from early region 1A and 1B with antisera to inducible fusion antigens produced in Escherichia coli. J Virol 49:132–141PubMedPubMedCentralGoogle Scholar
  40. Stackebrandt E, Fowler V, Mell H, Kröger A (1987) 16S rRNA analysis and the phylogenetic position of Wolinella succinogenes. FEMS Microbiol Lett 40:269–272CrossRefGoogle Scholar
  41. Stout GH (1988) 7-iron ferredoxin revisited. J Biol Chem 263:9256–9260PubMedGoogle Scholar
  42. Unden G, Kröger A (1982) Reconstitution in liposomes of the electron transport chain catalyzing fumarate reduction by formate. Biochim Biophys Acta 682:258–263CrossRefGoogle Scholar
  43. Unden G, Kröger A (1983) Low potential cytochrome b as an essential electron transport component of menaquinone reduction by formate in Vibrio succinogenes. Biochim Biophys Acta 725:325–331CrossRefGoogle Scholar
  44. Unden G, Hackenberg H, Kröger A (1980) Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. Biochim Biophys Acta 591:275–288CrossRefGoogle Scholar
  45. Unden G, Mörschel E, Bokranz M, Kröger A (1983) Structural properties of the proteoliposomes catalyzing electron transport from formate to fumarate. Biochim Biophys Acta 725:41–48CrossRefGoogle Scholar
  46. Vieira J, Messing J (1982) The pUC plasmids, M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268CrossRefGoogle Scholar
  47. Voordouw G, Strang JD, Wilson FR (1989) Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. J Bacteriol 171:3881–3889CrossRefGoogle Scholar
  48. Wessel D, Flügge UI (1984) A method for quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143CrossRefGoogle Scholar
  49. Zinoni F, Birkmann A, Stadtman TC, Böck A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 83:4650–4654CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. Bokranz
    • 1
  • M. Gutmann
    • 1
  • C. Körtner
    • 1
  • E. Kojro
    • 2
  • F. Fahrenholz
    • 2
  • F. Lauterbach
    • 1
  • A. Kröger
    • 1
  1. 1.Institut für MikrobiologieJ. W. Goethe UniversitätFrankfurtGermany
  2. 2.Max Planck Institut für BiophysikFrankfurtGermany

Personalised recommendations