Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Studies on the decomposition of the oxime HI 6 in aqueous solution

  • 100 Accesses

  • 29 Citations


HI 6 has been shown to be efficacious in soman intoxication of laboratory animals by reactivation of acetylcholinesterase. To assess possible risks involved in the administration of HI 6 its degradation products were analyzed at pH 2.0, 4.0, 7.4, and 9.0.

At pH 2.0, where HI 6 in aqueous solution has its maximal stability, attack on the aminal-acetal bond of the “ether bridge” predominates, with formation of formaldehyde, isonicotinamide, and pyridine-2-aldoxime. Besides, HI 6 decomposes at the oxime group yielding 2-cyanopyridine. Liberation of hydrocyanic acid at pH 2.0 is below 5%.

At pH 7.4, primary attack is on the oxime group, resulting in formation of the corresponding pyridone via an intermediate nitrile. The pyridone has been isolated and identified as 2-pyridinone, 1-(((4-carbamoylpyridinio)methoxy)methyl)formate. This major metabolite deaminates further to the 2-pyridinone, 1-(((4-carboxypyridinio)methoxy)methyl) derivative, which ultimately decomposes into formaldehyde, isonicotinic acid, and 2-pyridone. Hydrolysis of the acid amide group probably also occurs with HI 6 itself. Significant amounts of free hydrocyanic acid were only detected in the presence of an alkali trap; otherwise hydrocyanic acid reacts with formaldehyde to yield hydroxyacetonitrile from which hydrocyanic acid can be liberated again. Up to 0.6 equivalents of hydrocyanic acid were evolved at pH 7.4.

After repetitive administration and impaired renal elimination of HI 6, e.g. during renal shock, there might be some risk of cyanide intoxication.

This is a preview of subscription content, log in to check access.


  1. Askew BM, Davies DR, Green AL, Holmes R (1956) The nature of the toxicity of 2-oxo-oximes. Br J Pharmacol 11: 424–427

  2. Bošković B (1981) The treatment of soman poisoning and its perspectives. Fund Appl Toxicol 1: 203–213

  3. Bošković B, Kovačević V, Jovanović D (1984) PAM-2 Cl, HI-6, and HGG-12 in soman and tabun poisoning. Fund Appl Toxicol 4: S106-S115

  4. Brown ND, Stermer-Cox MG, Doctor BP, Hagedorn I (1984a) Separation of HI 6 and its degradation products by ion-pair high-performance liquid chromatography. J Chromatogr 292: 444–450

  5. Brown ND, Gray RR, Stermer-Cox MG, Doctor BP, Hagedorn I (1984b) Stability study of HI 6 —dichloride in various anticholinergic formulations. J Chromatogr 315: 389–394

  6. Christenson I (1968a) Hydrolysis of bis(4-hydroxyiminomethyl-1-pyridiniomethyl)ether dichloride (Toxogonin). Acta Pharm Suec 5: 23–36

  7. Christenson I (1968b) Hydrolysis of bis(4-hydroxyiminomethyl-1-pyridiniomethyl)ether dichloride (Toxogonin). II. Kinetics and equilibrium in acidic solution. Acta Pharm Suec 5: 249–262

  8. Christenson I (1972) Hydrolysis of obidoxime chloride (Toxogonin). III. Kinetics in neutral and alkaline solution. Acta Pharm Suec 9: 309–322

  9. Clement JG (1982) HI-6: Reactivation of central and peripheral acetylcholinesterase following inhibition by soman, sarin and tabun in vivo in the rat. Biochem Pharmacol 31: 1283–1287

  10. Ellin RI (1958) Stability of pyridine-2-aldoxime methiodide. 1. Mechanism of breakdown in aqueous alkaline solution. J Am Chem Soc 80: 6588–6590

  11. Ellin RI, Carlese JS, Kondritzer AA (1962) Stability of pyridine-2-aldoxime methiodide. II. Kinetics of deterioration in dilute aqueous solutions. J Pharm Sci 51: 141–146

  12. Enander I, Sundwall A, Sörbo B (1961) Metabolic studies on N-methylpyridinium-2-aldoxime. I. The conversion to thiocyanate. Biochem Pharmacol 7: 226–231

  13. Eyer P, Hell W (1985) Chemical stability of the Hagedorn oximes HGG-12 and HI 6. Arch Pharm 318: 938–946

  14. Eyer P, Hell W (1986) Untersuchung des Zerfalls von HGG 12 in wäßriger Lösung. Arch Pharm 319: 558–566

  15. Gross G (1980) Entwicklung von hochwirksamen Gegenmitteln bei Vergiftungen mit toxischen Phosphonsäureestern. Inaugural Dissertation, Freiburg

  16. Hagedorn I, Gündel WH, Schoene K (1969) Reaktivierung phosphorylierter Acetylcholin-Esterase mit Oximen: Beitrag zum Studium des Reaktionsablaufes. Arzneimittelforsch 19: 603–606

  17. Hagedorn I, Stark I, Lorenz HP (1972) Reaktivierung phosphorylierter Acetylcholin-Esterase. Abhängigkeit von der Aktivator-Acidität. Angew Chem 84: 354–356

  18. Klimmek R, Szinicz L, Weger N (1983) Chemische Gifte und Kampfstoffe. Wirkung und Therapie. Hippokrates Verlag, Stuttgart

  19. Kosower EM, Bauer SW (1960) Pyridinium complexes. II. The nature of the intermediate in the dithionite reduction of diphosphopyridine nucleotide. J Am Chem Soc 82: 2191–2194

  20. Kušić R, Bošković B, Vojvodić, Javanović D (1985) HI-6 in man: Blood levels, urinary excretion, and tolerance after intramuscular administration of the oxime to healthy volunteers. Fund Appl Toxicol 5: S89-S97

  21. Ligtenstein DA (1984) The synergism of HI 6 and atropine in organophosphate intoxications. Thesis, Leiden/Netherlands

  22. Marcov V, Rakin D, Binenfeld Z (1984) Hidroliza 1-(2-hidroksiiminometil-1-piridinijum)-3-(4-karbamoil-1-piridinijum)-2-oksapropan dihlorida (HI 6). Ispitivanje, stabilnosti vodenih rastvora. Naučno-technički pregled 34: 19–24

  23. Philipović I, Vukušić I (1983) Stability of oxime HI 6 in acidic solutions. Abstracts of the Second International Meeting on Cholinesterases, Bled

  24. Simons KJ, Briggs CJ (1983) The pharmacokinetics of HI 6 in beagle dogs. Biopharm Drug Dispos 4: 375–388

  25. Sket D, Brzin M (1986) Effect of HI 6, applied into the cerebral ventricles, on the inhibition of brain acetylcholinesterase by soman in rats. Neuropharmacology 25: 103–107

  26. Sterri SH, Lyngaas S, Fonnum F (1983) Cholinesterase and carboxylesterase activities in soman poisoned rats treated with bispyridinium mono-oximes HI-6 and HS-6. Biochem Pharmacol 32: 1646–1649

  27. Williams WJ (1979) Handbook of anion determination. Butterworth Co Ltd. London, p 70

Download references

Author information

Correspondence to P. Eyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eyer, P., Hell, W., Kawan, A. et al. Studies on the decomposition of the oxime HI 6 in aqueous solution. Arch Toxicol 59, 266–271 (1986). https://doi.org/10.1007/BF00290549

Download citation

Key words

  • Oximes
  • HI 6
  • Cyanide
  • Formaldehyde