Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The residue of vector sets with applications to decidability problems in Petri nets


A set K of integer vectors is called right-closed, if for any elementmεK all vectors m′≧m are also contained in K. In such a case K is a semilinear set of vectors having a minimal generating set res(K), called the residue of K. A general method is given for computing the residue set of a right-closed set, provided it satisfies a certain decidability criterion.

Various right-closed sets wich are important for analyzing, constructing, or controlling Petri nets are studied. One such set is the set CONTINUAL(T) of all such markings which have an infinite continuation using each transition infinitely many times. It is shown that the residue set of CONTINUAL(T) can be constructed effectively, solving an open problem of Schroff. The proof also solves problem 24 (iii) in the EATCS-Bulletin. The new methods developed in this paper can also be used to show that it is decidable, whether a signal net is prompt [23] and whether certain ω-languages of a Petri net are empty or not.

It is shown, how the behaviour of a given Petri net can be controlled in a simple way in order to realize its maximal central subbehaviour, thereby solving a problem of Nivat and Arnold, or its maximal live subbehaviour as well. This latter approach is used to give a new solution for the bankers problem described by Dijkstra.

Since the restriction imposed on a Petri net by a fact [11] can be formulated as a right closed set, our method also gives a new general approach for „implementations” of facts.

This is a preview of subscription content, log in to check access.

7. References

  1. 1.

    Brinch Hansen, P.: Operating System Principles. Englewood Cliffs: Prentice-Hall 1973

  2. 2.

    Brams, G.W.: Réseaux de Petri: Théorie et pratique. Paris: Masson 1983

  3. 3.

    Burkhard, H.D.: Two Pumping Lemmata for Petri nets. EIK 17, 349–362 (1981)

  4. 4.

    Byrn, H.W.: Sequential processes, deadlocks and semaphore primitives. Harvard Univ., Techn. Rep. 7-75, Cambridge 1975

  5. 5.

    Carstensen, H.: Fairneß bei Petrinetzen mit unendlichem Verhalten. Univ. Hamburg, Fachbereich Informatik, Report B-93/82 (1982)

  6. 6.

    Conway, J.H.: Regular Algebra and Finite Machines. London: Chapman and Hall 1971

  7. 7.

    Carstensen, H., Valk, R.: Infinite behaviour and fairness in Petri nets. Fourth European Workshop on Application and Theory of Petri Nets, Toulouse, France (1983)

  8. 8.

    Dijkstra, E.W.: Co-operating sequential Processes. In: Programming Languages 43–112 F. Genuys (ed.). Academic Press, London: 1968

  9. 9.

    Best, E, Thiagarajan, P.S.: P24 (iii). In: EATCS Bulletin 20, 310 (1983)

  10. 10.

    Eilenberg, S., Schützenberger, M.P.: Rational sets in communicative monoids. J. Algebra 13, 173–191 (1969)

  11. 11.

    Genrich, H.J., Lautenbach, K.: Facts in place/transition-nets. Lect. Notes Comput. Sci. No 64, pp. 213–231. Berlin-Heidelberg-New York: Springer

  12. 12.

    Grabowski, J.: Linear methods in the Theory of Vector addition systems I. EIK 16, 207–236 (1980)

  13. 13.

    Hack, M.: Decision Problems for Petri Nets and Vector Addition Systems. MIT, Proj. MAC, Comput. Struct. Group Memo 95-1 (1974)

  14. 14.

    Hack, M.: Petri net languages. MIT, Proj. MAC, Comp. Struct. Group Memo 124 (1975)

  15. 15.

    Hack, M.: The equality problem for vector addition systems is undecidable. Theoret. Comput. Sci. 2, 77–95 (1976)

  16. 16.

    Hauschildt, D., Valk, R.: Safe states in banker like resource allocation problems. Proc. 5th. European Workshop Appl. Theory of Petri Nets, Aarhus, 1984

  17. 17.

    Jantzen, M., Valk, R.: Formal properties of place/transition nets, In: Net Theory and Applications. W. Brauer (ed.), pp. 165–212. Lect. Notes Comput. Sci. No 84. Berlin-Heidelberg-New York: Springer 1979

  18. 18.

    Keller, R.M.: Vector Replacement Systems: A Formalism for Modelling Asynchronous Systems. Comput. Sci. Lab., Princeton Univ., Techn. Rep. 117 (1972, revised 1974)

  19. 19.

    Karp, R.M., Miller, R.E.: Parallel Program Schemata. J. Comput. Syst. Sci. 3, 147–195 (1969)

  20. 20.

    Landweber, L.H.: Decision problems for ω-automata. Math. Syst. Theory 3, 376–384 (1969)

  21. 21.

    Lipton, R.J.: The Reachability Problem Requires Exponential Space. Yale Univ., Dept. of Comp. Sci., Research Report #62 (1976)

  22. 22.

    Nivat, M., Arnold, A.: Comportements de processus. Lab. Informatique Théor. et Programm., Univ. Paris 6 and 7, Paris (1982)

  23. 23.

    Patil, S.S., Thiagarajan, P.S.: unpublished manuscript

  24. 24.

    Rackoff, C.: The Covering and Boundedness Problems for Vector Addition Systems. Theor. Comput. Sci. 6, 223–231 (1978)

  25. 25.

    Schroff, R.: Vermeidung von totalen Verklemmungen in bewerteten Petrinetzen. Ph.D. Thesis, Techn. Univ. München (1974)

  26. 26.

    Schroff, R.: Vermeidung von Verklemmungen in bewerteten Petrinetzen. Lect. Notes Comput. Sci. No. 26, pp. 316–325 Berlin-Heidelberg-New York: Springer 1975

  27. 27.

    Valk, R.: Prévention des bloquages aux systèmes paralleles, Lecture notes, Univ. Paris VI (1976)

  28. 28.

    Valk, R.: Infinite behaviour of Petri nets. Theor. Comput. Sci. 25, 311–341 (1983)

  29. 29.

    Valk, R., Vidal-Naquet, G.: Petri Nets and Regular Languages. J. Comput. Syst. Sci. 23, 299–325 (1981)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valk, R., Jantzen, M. The residue of vector sets with applications to decidability problems in Petri nets. Acta Informatica 21, 643–674 (1985). https://doi.org/10.1007/BF00289715

Download citation


  • Computational Mathematic
  • Computer System
  • System Organization
  • Open Problem
  • Decidability Problem