, Volume 55, Issue 1, pp 69–74 | Cite as

Random distribution of centromere regions at mitosis in cultured cells of Muntiacus muntjak

  • Raymond Mayron
  • Dwayne Wise


The manner in which centromere regions of mitotic chromosomes are distributed with respect to the age of their DNA was studied. Cells of the Indian deer, Muntiacus muntjak, were grown in the presence of bromodeoxyuridine (BrdU) for two generations and stained with the fluorescent dye Hoechst 33258. Chromatids containing “granddaughter DNA” appear dim when compared with those containing “grandparental DNA”. The frequencies of the various anaphase patterns of bright and dim centromere regions were binomially distributed, indicating random distribution of chromatids with respect to the age of their DNA templates.


Developmental Biology Random Distribution Centromere Region Bromodeoxyuridine Mitotic Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Comings, D. E.: The distribution of sister chromatids at mitosis in Chinese hamster cells. Chromosoma (Berl.) 29, 428–433 (1970)Google Scholar
  2. Cuevas-Sosa, A.: Human chromosomology: segretion of chromatids in diploid cells in vitro. Nature (Lond.) 218, 1059–1061 (1968)Google Scholar
  3. Eberle, H., Lark, K. G.: Chromosome segregation in Bacillus subtilis. J. molec. Biol. 22, 183–186 (1966)Google Scholar
  4. Geard, C. R.: Chromatid distribution at mitosis in cultured Wallabia bicolor cells. Chromosoma (Berl.) 44, 301–308 (1973)Google Scholar
  5. Heddle, J. A., Wolff, S., Whissell, D., Cleaver, J.: Distribution of chromatids at mitosis. Science 158, 929–931 (1967)Google Scholar
  6. Jacob, F., Ryter, A., Cuzin, F.: On the association between DNA and membrane in bacteria. Proc. roy. Soc. B 164, 267–278 (1966)Google Scholar
  7. Lark, K. G.: Regulation of chromosome replication and segregation in bacteria. Bact. Rev. 30, 3–32 (1966)Google Scholar
  8. Lark, K. G.: Nonrandom segregation of sister chromatids in Vicia faba and Triticum boeoticum. Proc. nat. Acad. Sci. (Wash.) 58, 352–359 (1967)Google Scholar
  9. Lark, K. G.: Sister chromatid segregation during mitosis in polyploid wheat. Genetics 62, 289–305 (1969)Google Scholar
  10. Lark, K. G., Bird, R. E.: Segregation of the conserved units of DNA in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 54, 1444–1450 (1965)Google Scholar
  11. Lark, K. G., Consigla, R. A., Minocha, H. C.: Segregation of sister chromatids in mammalian cells. Science 154, 1202–1205 (1966)Google Scholar
  12. Latt, S. A.: Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)Google Scholar
  13. Latt, S. A., Stetten, G., Juergens, L. A., Willard, H. P., Scher, C. D.: Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. J. Histochem. Cytochem. 23, 493–505 (1975)Google Scholar
  14. Priest, J. H., Shikes, R. H.: Distribution of labelled chromatin. I. M1 and M2 anaphases of diploid and tetraploid cultured mammalian cells. J. Cell. Biol. 47, 99–106 (1970)Google Scholar
  15. Rosenberger, R. F., Kessel, M.: Non-random sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans. J. Bact. 96, 1208–1213 (1968)Google Scholar
  16. Ryter, A., Jacob, F.: Ségrégation des noyaux chez Bacillus subtilis au cours de la germination des spores. C. R. Acad. Sci. (Paris) 263, 1176–1179 (1966)Google Scholar
  17. Wurster, D. H., Benirschke, K.: Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168, 1364–1366 (1970)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Raymond Mayron
    • 1
  • Dwayne Wise
    • 1
  1. 1.Department of ZoologyDuke UniversityDurhamUSA

Personalised recommendations