Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Wavelength-division microlens interconnection using weakly diffracted Gaussian beam

  • 26 Accesses

  • 2 Citations


Free-space digital optics is a new technology that exploits the ability of optics to handle thousands of light beams or information channels at once. This and other features of optics complement the strengths and weaknesses of purely electronic systems. A compact free-space optical system is proposed that uses an array of microlenses for chip-to-chip and board-to-board interconnections. Here the weakly diffracted Gaussian beam and wavelength-division architecture are utilized to improve the channel density and reduce crosstalk in a microlens interconnection system. Based on the simulation, we improve the channel capacity by 3.47 times (or reduce crosstalk by 93.1 dB) while maintaining the same crosstalk (or channel density) compared with the conventional microlens interconnection system. The nonperfect filtering effect of different wavelengths at the detector plane is also studied to fully investigate the properties of the proposed scheme. The parameter sensitivity of the proposed system is studied for completeness. From the simulations, the relationship between the interconnection distance and spot size at the detector plane is wavelength-independent. In addition, the spot size is more sensitive to change of microlens diameter than to other system parameters.

This is a preview of subscription content, log in to check access.


  1. 1.

    J.GOODMAN, F.LEONBERGER, S.KUNG and R.ATHALE, Proc. IEEE 72 (1984) 850.

  2. 2.

    Z.POPOVIC, R.SPRAGUE and G.CONNELL, Appl. Opt. 27 (1988) 1281.

  3. 3.

    F. B.McCORMICK, F. A. P.TOOLEY, T. J.CLOONAN, J. M.SASIAN and H. S.HINTON, Opt. Quantum Electron. 24 (1992) 465.

  4. 4.

    F. B.McCORMICK, F. A. P.TOOLEY, T. J.CLOONAN, J. M.SASIAN and H. S.HINTON, Opt. Quantum Electron. 24 (1992) 1209.

  5. 5.

    P.BELLAND and J. P.CRENN, Appl. Opt. 21 (1982) 522.

  6. 6.

    N. C.CRAFT and A. Y.FELDBLUM, Appl. Opt. 31 (1992) 1735.

  7. 7.

    C. J.CHANG-HASNAIN, J. P.HARBISON, C. E.ZAH, M. W.MAEDA, L. T.FLOREZ, N. G.STOFFEL and T. P.LEE, IEEE J. Quantum Electron. 27 (1991) 1368.

  8. 8.

    S. C. WANG, private communications, Lockheed, 14 Sept. 1993.

  9. 9.

    H. S.HINTON and A. L.LENTINE, IEEE Circuits and Systems Magazine 9 (Mar. 1993) 12.

  10. 10.

    A. E.SIEGMAN, Lasers (University Science, Mill Valley, CA, 1986) chap. 17, p. 666.

  11. 11.

    T.SAKANO, T.MATSUMOTO, K.NOGUCHI and T.SAWABE, Appl. Opt. 30 (1991) 2334.

  12. 12.

    T. J.CLOONAN and A. L.LENTINE, Appl. Opt. 30 (1991) 3721.

  13. 13.

    J. E.MIDWINTER, IEE Proc. J. 139 (1992) 1.

  14. 14.

    H. S. HINTON and D. A. B. MILLER, AT&T Tech. J. (Jan. 1992) 84.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuo, C.J., Su, Y.S. & Chang, H.T. Wavelength-division microlens interconnection using weakly diffracted Gaussian beam. Opt Quant Electron 28, 381–394 (1996). https://doi.org/10.1007/BF00287026

Download citation


  • Communication Network
  • System Parameter
  • Material Processing
  • Optical System
  • Light Beam