Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Zn-rich högbomite formed from gahnite in the metabauxites of the Menderes Massif, SW Turkey

  • 92 Accesses

  • 26 Citations


Gahnite, ZnAl2O4, present as an accessory mineral in regionally metamorphosed low-grade diasporites, has reacted in adjacent higher-grade, corundum-bearing metabauxite equivalents (emeries) to form Zn-rich högbomite, (Zn,Fe2+,Mg,Ni)t-2x (Ti,Sn)xAl2O4, of the 4H polytype. Commonly, the initial högbomite crystals grew epitactically along the octahedral faces of gahnite, which was subsequently dissolved, so that högbomite now forms spectacularly intergrown sets of eight crystals in perfect crystallographic orientation to each other. This indicates a metamorphic reaction, probably involving a fluid, transporting mainly the elements Zn and Al. Reactant Ti minerals in the diasporites were rutile and titanian hematite (10–15 mol% FeTiO3). In the emeries högbomite coexists with still more Ti-rich hematites containing between 26 and 37 mol% FeTiO3. The overall reaction relations involving partial reduction may be subdivided into the intial univariant reaction, gahnite+diaspore+Ti-hematite+rutile=högbomite+H2O+O2. This was followed, in the absence of gahnite, by compositional readjustments of högbomite and Ti-hematite and the appearance of magnetite. Core to rim zoning profiles indicate that, with continued growth, the högbomite crystals became poorer in Zn and Ti, but richer in Fe2+, while the Ti-contents of coexisting hematite increased. Högbomite formation at the expense of gahnite started at temperatures as low as about 400° C for an estimated pressure of 5–6 kbar.

This is a preview of subscription content, log in to check access.


  1. Alkanoglu E (1978) Geologisch-petrographische und geochemische Untersuchungen am Südostrand des Menderes-Massivs in Westanatolien-Türkei. Unpublished Dr. Thesis, Ruhr-Universität Bochum, 147 pp

  2. Angus NS, Middleton R (1985) Compositional variation in högbomites from North Connemara, Ireland. Mineral Mag 49:649–654

  3. Bannister FA, Hey MA, Stadler HP (1947) Nigerite, a new tin mineral. Mineral Mag 28:129–136

  4. Başarir E (1970) Geology and petrography of the rocks of the southern Menderes Massif, east of Bafa Lake (in Turkish). Scientif Rep Fac Science, Ege University No 102

  5. Brinkmann R (1971) Das kristalline Grundgebirge von Anatolien. Geol Rundsch 60:886–889

  6. Burton BP (1991) The interplay between chemical and magnetic ordering. In: Lindsley DH (ed) Oxide minerals: petrology and magnetic significance. Reviews in Mineralogy (Mineral Soc Am) 25:303–321

  7. Chatterjee ND, Flux S (1986) Thermodynamic mixing properties of muscovite-paragonite crystalline solutions at high temperatures and pressures, and their geological applications. J Petrol 27:677–693

  8. Coolen JJMMM (1981) Högbomite and aluminium spinel from some metamorphic rocks and Fe-Ti ores. Neues Jahrb Mineral Monatsh 8:374–384

  9. Dora OÖ (1981) Petrologic investigations on feldspars from the Menderes Massif (in Turkish) Yerbilimleri 7:54–63

  10. Dürr S (1975) Uber Alter und geotektonische Stellung des Menderes-Kristallins/SW-Anatolien und seine Äquivalente in der mittleren Ägäis. Unpublished Habil Thesis, Universität Marburg, 107 pp

  11. Dürr S, Altherr R, Keller J, Okrusch M, Seidel E (1978) The Median Aegean Crystalline Belt: stratigraphy, structure, metamorphism, magmatism. In: Closs H, Roeder D, Schmidt K (eds) Alps, Apennines, Hellenids. E Schweizerbart, Stuttgart, pp 455–477

  12. Essene EJ, Petersen EU, Peacor DR (1982) Nigerite-högbomitespinel assemblages from Manitouwadge, Ontario and their significance (abstr). EOS Trans Am Geophys Un 63:456

  13. Feenstra A (1985) Metamorphism of bauxites on Naxos, Greece. Geologica ultraiectina, Utrecht No. 39, 206 pp

  14. Graciansky P Ch (1966) Le Massif cristallin du Menderes (Taurus occidental, Asie Mineure), un exemple possible de vieux socle granitique remobilisé. Rev Geogr Phys Geol Dyn 8:289–306

  15. Grew ES, Abraham K, Medenbach O (1987) Ti-poor högbomite in kornerupine-cordierite-silimanite rocks from Ellammankovilpatti, Tamil Nadu, India. Contrib Mineral Petrol 95:21–31

  16. Grew ES, Hiroi Y, Shiraishi K (1990) Högbomite from the Prince Olav Coast, East Antarctica: an example of oxidation-exsolution of a complex magnetite solid solution? Am Mineral 75:589–600

  17. Lindsley DH (1991) Experimental studies of oxide minerals. In: Lindsley DH (ed) Oxide minerals: petrological and magnetic significance. Reviews in Mineralogy (Mineral Soc Am) 25:69–106

  18. Mancktelow NS (1981) Högbomite of unusual composition from Reedy Creek, South Australia. Mineral Mag 44:91–94

  19. McKie D (1963) The högbomite polytypes. Mineral Mag 33:563–580

  20. Moleva VA, Myasnikov VS (1952) Högbomite and its variety, zinchögbomite. Doklady Akad Nauk SSR 83:733–736

  21. Nickel EH (1991) Solid solutions in mineral nomenclature. Schweiz Mineral Petrogr Mitt 71:463–465

  22. Ockenga E (1989) Zinkhögbomit aus Metabauxiten von Samos (Griechenland). Ber Dtsch Mineral Ges, Beih Z Eur J Mineral 1:140

  23. Önay TS (1949) Über die Smirgelgesteine SW-Anatoliens. Schweiz Mineral Petrogr Mitt 29:357–491

  24. Peacor DR (1967) New data on nigerite. Am Mineral 52:864–866

  25. Petersen EU, Essene EJ, Peacor DR, Marcotty LA (1989) The occurrence of högbomite in high-grade metamorphic rocks. Contrib Mineral Petrol 101:350–360

  26. Schmetzer K, Berger A (1990) Lamellar iron-free högbomite-24R from Tanzania. Neues Jahrb Mineral Monatsh 9:401–412

  27. Schumacher JC, Schäfer K, Seifert F (1987) Lamellar nigerite in Zn-rich spinel from the Falun deposit, Sweden. Contrib Mineral Petrol 95:182–190

  28. Spry PG (1982) An unusual gahnite-forming reaction, Geco base metal deposit, Manitouwadge, Ontario. Can Mineral 20:549–553

  29. Visser D, Thijssen PHM, Schumacher JC (1992) Högbomite in sapphirine-bearing rocks from the Bamble Sector, south Norway. Mineral Mag 56:343–351

  30. Wedepohl KH (1953) Untersuchungen zur Geochemie des Zinks. Geochim Cosmochim Acta 3:93

  31. Wedepohl KH (1972) Zn abundance in common sediments and sedimentary rocks. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin Heidelberg

  32. Willner A, Schreyer W, Moore JM (1990) Peraluminous metamorphic rocks from the Namaqualand Metamorphic Complex (South Africa): geochemical evidence for an exhalation-related, sedimentary origin in a Mid-Proterozoic rift system. Chem Geology 81:221–240

  33. Wilson AF (1977) A zinkian högbomite and some other högbomites from the Strangways Range, Central Australia. Mineral Mag 41:337–344

  34. Yalçin Ü (1987) Petrologic und Geochemie der Metabauxite SW-Anatoliens. Unpublished Dr Thesis, Ruhr-Universität Bochum, 146 pp

  35. Zakrzewski MA (1977) Högbomite from the Fe-Ti deposits of Liganga (Tanzania). Neues Jahrb Mineral Monatsh 8:373–380

Download references

Author information

Correspondence to W. Schreyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yalçin, Ü., Schreyer, W. & Medenbach, O. Zn-rich högbomite formed from gahnite in the metabauxites of the Menderes Massif, SW Turkey. Contr. Mineral. and Petrol. 113, 314–324 (1993). https://doi.org/10.1007/BF00286924

Download citation


  • Magnetite
  • Turkey
  • Expense
  • Rutile
  • Mineral Resource